留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

应压木细胞壁S2层的微纤丝螺旋角对其抗压韧性的影响

刘浩止/a>,王建屰/a>,石广玈/a>

downloadPDF
刘浩? 王建? 石广? 应压木细胞壁S2层的微纤丝螺旋角对其抗压韧性的影响[J]. 北京林业大学学报, 2023, 45(4): 136-146. doi: 10.12171/j.1000-1522.20220506
引用本文: 刘浩? 王建? 石广? 应压木细胞壁S2层的微纤丝螺旋角对其抗压韧性的影响[J]. 北京林业大学学报, 2023, 45(4): 136-146.doi:10.12171/j.1000-1522.20220506
Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. doi: 10.12171/j.1000-1522.20220506
Citation: Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2layer of compression wood cell wall on the compressive toughness of it[J].Journal of Beijing Forestry University, 2023, 45(4): 136-146.doi:10.12171/j.1000-1522.20220506
doi:10.12171/j.1000-1522.20220506
基金项目:国家自然科学基金重点国际合作研究项目?202010100(/div>
详细信息
    作者简今

    刘浩正 主要研究方向:生物力学 Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:ysulhz@163.com">ysulhz@163.com 地址 300354天津市津南区雅观?35号天津大学机械工程学院力学系

    责任作耄

    石广玉,教授,博士生导师。主要研究方向:固体力学和复合材料力学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:shi_guangyu@tju.edu.cn">shi_guangyu@tju.edu.cn 地址 同上

  • 中图分类叶S781.29;S781.1;O242.2

Effects of microfibril helix angle in the S2layer of compression wood cell wall on the compressive toughness of it

  • 摘要: 目的应压木细胞壁S 2层中的大微纤丝螺旋角(MFA)是树木管胞对力学环境适应性生长的结果,故它有其特别的力学性能。但目前人们还不了解S 2层中大MFA对其抗压性能的增韧机理。基于应压木细胞壁S 2层的超微结构建立复合材料力学模型,采用数值模拟方法研究应压木细胞壁S 2层中MFA对其抗压韧性的影响,可以探究其中的力学机理,并探索基于数值模型研究木细胞壁压缩韧性的建模与分析方法,进而为仿生材料设计奠定力学基础、/sec> 方法首先将云杉木细胞壁S 2层简化为连续微纤丝和基体组成的复合材料,并利用夹杂理论的自洽模型计算木细胞壁S 2层基体的等效弹性常数。然后利用HyperWorks建立木细胞壁的纤维增强复合材料有限元分析模型,用Abaqus模拟不同MFA的应压木和正常木细胞壁S 2层在压缩载荷下的力学行为,并用所得结果分析其MFA与抗压韧性的关系。在此基础上,对比是否考虑木细胞壁的S 1、S 3(或S 2L,指的是S 2层与S 1层之间木质素和半纤维素含量高的区域)和MP层(P和ML层)对其受压力学行为的影响,并分析在应压木细胞壁数值模型中考虑各组分材料塑性行为的重要性、/sec> 结果在压力作用下,当木细胞壁S 2层的MFA增大时,其临界屈曲位移增大,临界屈曲压力先减小再增大?5° MFA应压木细胞壁S 2层的临界压力?° MFA正常木细胞壁S 2层相当,但前者的临界屈曲位移是后者的3.57倍,屈曲失稳前的应变能是后者的2.95倍。在相同压力下,45° MFA应压木细胞壁S 2层微纤丝的von Mises应力低于0° MFA正常木。由于单个应压木细胞壁S 2层中螺旋状微纤丝所具有的压−扭耦合变形受到周边管胞对扭转变形的约束,其抗压刚度和抗压韧性得到增强。应压木细胞壁中的S 1、S 2L和MP层对其受压屈曲有显著的约束作用,完整应压木细胞壁的临界压力比只考虑S 2层的临界压力增大37.6%。压力作用下木细胞壁的破坏模式为塑性屈曲,所以考虑木细胞壁各组分材料的塑性行为对准确地计算其抗压韧性十分重要,忽略其塑性行为会使其临界压力的计算结果增?.97倍、/sec> 结论在受压状态下,应压木细胞壁S 2层中微纤丝的螺旋形貌改变了微纤丝与基体间的应力传递,使得S 2层的基体承受更多的压应力,木细胞壁的破坏模式变为局部塑性屈曲。所以在压力作用下,尽管应压木细胞壁的抗压刚度随S 2层MFA的增大而减小,但应压木细胞壁的临界屈曲位移随MFA的增大而显著地增大,从而增强了它的抗压韧性。当MFA?5°左右时,应压木细胞壁的抗压韧性最佳,此时不仅它的临界屈曲位移比正常木细胞壁S 2层高两倍多,且它的临界屈曲压力也略高于后者、/sec>

  • ?nbsp; 1木细胞壁微结枃/p>

    图片引自参考文献[20]和[21]。Pictures are cited from references [20] and [21].

    Figure 1.Microstructure of wood cell wall

    ?nbsp; 2正常木和应压木细胞壁几何模型

    Figure 2.Geometric models of cell walls of normal and compression wood

    ?nbsp; 3木细胞壁有限元网栻/p>

    Figure 3.Finite element mesh of wood cell wall

    ?nbsp; 4木细胞壁上端面载荷和外表面边界条仵/p>

    Figure 4.Load on the upper face and boundary conditions on the outer surface of wood cell wall

    ?nbsp; 5不同MFA木细胞壁S2层压力–位移曲纾/p>

    Figure 5.Force-displacement curves of S2 layers of wood cell wall with different MFA

    ?nbsp; 60° MFA的正常木?5° MFA的应压木细胞壁S2层压缩屈曲变形图

    Figure 6.Compressive buckling deformation graphs of S2layers of normal wood cell wall at 0° MFA and compression wood cell wall at 45° MFA

    ?nbsp; 70° MFA正常木和45° MFA应压木细胞壁S2层轴向压缩过程中的应变能

    Figure 7.Strain energy during axial compression of S2layers of normal wood cell wall at 0° MFA and compression wood cell wall at 45° MFA

    ?nbsp; 80° MFA正常木和45° MFA应压木细胞壁S2层微纤丝和基体von Mises应力分布云图

    Figure 8.von Mises stress cloud diagrams of microfibrils and matrix of S2layers of normal wood cell wall at 0° MFA and compression wood cell wall at 45° MFA

    ?nbsp; 9有无扭转约束?5° MFA应压木细胞壁S2层压力–位移曲纾/p>

    Figure 9.Force-displacement curves of S2layers of compression wood cell walls with and without torsional restraint at 45° MFA

    ?nbsp; 10不同长径比的45° MFA应压木细胞壁S2层应力–应变曲纾/p>

    Figure 10.Stress-strain curves of S2layers of compression wood cell walls with different aspect ratios at 45° MFA

    ?nbsp; 11不同水体积分数的45° MFA应压木细胞壁S2层压力–位移曲纾/p>

    Figure 11.Force-displacement curves of S2layers of compression wood cell walls with different water volume ratio at 45° MFA

    ?nbsp; 12考虑所有层和只考虑S2层的45°应压木细胞壁压力–位移曲纾/p>

    Figure 12.Force-displacement curves of compression wood cell walls considering all layers and considering only S2layer at MFA 45°

    ?nbsp; 13线弹性和弹塑?5°MFA应压木细胞壁压力–位移曲纾/p>

    Figure 13.Force-displacement curves of compression wood cell walls at 45° MFA using linear elastic and elastoplastic models

    ?nbsp; 2S2层基体成分材料的力学参数及体积分?/p>

    Table 2.Mechanical parameters of matrix component materials of S2layer

    成分 Component 体积模量
    Bulk modulus/GPa
    剪切模量
    Shear modulus/GPa
    在S2层中体积分数
    Volume fraction in S2layer/%
    半纤维素 Hemicellulose 8.89 2.96 17.0
    木质 Lignin 5.00 2.30 28.0
    水和提取 Water and extract 2.30 0 14.0
    下载: 导出CSV

    ?nbsp; 3微纤丝弹性常?/p>

    Table 3.Elastic constants of microfibril

    部分
    Component
    $ {E}_{\mathrm{A}} $/GPa $ {E}_{\mathrm{T}} $/GPa $ {\mu }_{\mathrm{A}} $ $ {\mu }_{\mathrm{T}} $ $ {G}_{\mathrm{A}} $/GPa
    微纤东br/>Microfibril 62.77 15.00 0.087 0.420 3.00
    注:$ {E}_{\mathrm{A}} $? {\mu }_{\mathrm{A}} $? {E}_{\mathrm{T}}\mathrm{、}{\mu }_{\mathrm{T}} $分别表示微纤丝轴向和横向的弹性模量、泊松比? {G}_{\mathrm{A}} $为剪切模量。Notes: $ {E}_{\mathrm{A}} $, $ {\mu }_{\mathrm{A}} $ and $ {E}_{\mathrm{T}}, \;{\mu }_{\mathrm{T}} $ represent the axial and lateral elastic modulus and Poisson’s ratio of the microfibril, $ {G}_{\mathrm{A}} $ is the shear modulus.
    下载: 导出CSV

    ?nbsp; 4S1、S3、P和ML层的弹性常?/p>

    Table 4.Elastic constants of S1, S3, P and ML layers

    细胞壁层
    Cell wall layer
    $ {E}_{\mathrm{c}} $/GPa $ {E}_{\mathrm{r}} $/GPa $ {\mu }_{\mathrm{c}} $ $ {\mu }_{\mathrm{r}} $ $ {G}_{\mathrm{c}} $/GPa
    S1 25.64 8.74 0.226 0.035 2.88
    S3 23.88 8.11 0.232 0.036 2.70
    ML + P 11.51 11.51 0.200 0.200 4.80
    注:下标c和r分别表示木细胞壁的周向和径向。Note: subscripts c and r indicate the circumferential and radial directions of the wood cell wall.
    下载: 导出CSV

    ?nbsp; 5微纤丝和基体塑性材料参?/p>

    Table 5.Plastic material parameters of microfibril and matrix

    部分
    Component
    屈服应力
    Yield stress/GPa
    极限压应劚br/>Ultimate compressive stress/GPa 极限塑性应受br/>Ultimate plastic strain
    基体
    Matrix
    0.054 0.243 0.770
    微纤东br/>Microfibril 0.318 0.636 0.107
    下载: 导出CSV
  • [2]Färber J, Lichtenegger H C, Reiterer A, et al. Cellulose microfibril angles in a spruce branch and mechanical implications[J]. Journal of Materials Science, 2001, 36(21): 5087?092. doi:10.1023/A:1012465005607 [3]杜明? 钟珊? 林二? ? 杉木应压木形成中的显微特征及主要代谢成分变化[J]. 核农学报, 2022, 36(11): 2307?315. doi:10.11869/j.issn.100-8551.2022.11.2307

    Du M Q, Zhong S L, Lin E P, et al. Anatomy characteristics and study of alterations of key metabolic components in Cunninghamia lanceolataduring compression wood formationon wood formation[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11): 2307?315. doi:10.11869/j.issn.100-8551.2022.11.2307 [4]Ruelle J. Morphology, anatomy and ultrastructure of reaction wood[M]. Berlin: Springer Berlin Heidelberg, 2013: 13?35. [5]李柬? 陈胜, 李海? ? 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115?22.

    Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115?22. [6]Adusumalli R, Raghavan R, Ghisleni R, et al. Deformation and failure mechanism of secondary cell wall in spruce late wood[J]. Applied Physics A, 2010, 100(2): 447?52. doi:10.1007/s00339-010-5847-1 [7]张淑? 余雁, 费本? ? 杉木木材管胞纵向弹性模量的研究[J]. 北京林业大学学报, 2012, 34(6): 126?30.

    Zhang S Q, Yu Y, Fei B H, et al. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126?30. [8]余雁. 人工林杉木管胞的纵向力学性质及其主要影响因子研究[D]. 北京: 中国林业科学研究? 2003.

    Yu Y. Longitudinal mechanical properties and its main influencing factors of tracheids of Chinese fir from plantation[D]. Beijing: Chinese Academy of Forestry, 2003. [9]孙海? 苏明? 吕建? ? 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学?, 2019, 47(5): 50?8.

    Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50?8. [10]Barrios A, Trincado G, Watt M S. Wood properties of juvenile and mature wood of Pinus radiataDon trees growing on contrasting sites in Chile[J]. Forest Science, 2017, 63(2): 184?91. doi:10.5849/forsci.2016-060 [11]蒋坤? 陈丽? 杨苑? ? 华北油松、落叶松根系抗拉强度与其微观结构的相关性研究[J]. 水土保持学报, 2013, 27(2): 8?2. doi:10.13870/j.cnki.stbcxb.2013.02.053

    Jiang K Y, Chen L H, Yang Y J, et al. Relationship between tensile strength and selected anatomical features of two different conifer species roots in North China[J]. Journal of Soil and Water Conservation, 2013, 27(2): 8?2. doi:10.13870/j.cnki.stbcxb.2013.02.053 [12]李新? 张明? 利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2): 96?9. doi:10.13759/j.cnki.dlxb.2014.02.023

    Li X Y, Zang M H. Relationship of wood moisture content and the degree of crystallinity by X-Ray diffraction[J]. Journal of Northeast Forestry University, 2014, 42(2): 96?9. doi:10.13759/j.cnki.dlxb.2014.02.023 [13]Schwiedrzik J, Raghavan R, Rüggeberg M, et al. Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling[J]. Philosophical Magazine (Abingdon, England), 2016, 96(32-34): 3461?478. doi:10.1080/14786435.2016.1235292 [14]赵彻. 异质材料与微结构耦合仿生设计及其3D打印[D]. 长春: 吉林大学, 2017.

    Zhao C. Biomimetic design and 3D printing of composite by coupling heterogeneous materials and microstructures[D]. Changchun: Jilin University, 2017. [15]Li X W, Yu H C, Qing H Q, et al. Helical fiber pull-out in biological materials[J]. Acta Mechanica Solida Sinica, 2016, 29(3): 245?56. doi:10.1016/S0894-9166(16)30159-8 [16]Gao Y, Li B, Wang J, et al. Fracture toughness analysis of helical fiber-reinforced biocomposites[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104206. doi:10.1016/j.jmps.2020.104206 [17]Zhong W, Zhang Z, Chen X, et al. Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions[J]. Acta Mechanica Sinica, 2021, 37(7): 1136?151. doi:10.1007/s10409-021-01112-z [18]Oliveira P R, Ribeiro F S L M, Panzera T H, et al. Hybrid polymer composites made of sugarcane bagasse fibres and disposed rubber particles[J]. Polymers and Polymer Composites, 2021, 29(9): S1280−S1293. [19]苏骏, 钱维? 郭锋, ? 超低温对超高韧性水泥基复合材料抗压韧性影响试验[J]. 复合材料学报, 2021, 38(12): 4325?336. doi:10.13801/j.cnki.fhclxb.20210223.002

    Su J, Qian W M, Guo F, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325?336. doi:10.13801/j.cnki.fhclxb.20210223.002 [20]Deng Q, Li S, Chen Y. Mechanical properties and failure mechanism of wood cell wall layers[J]. Computational Materials Science, 2012, 62: 221?26. doi:10.1016/j.commatsci.2012.05.050 [21]Hofstetter K, Hellmich C, Eberhardsteiner J. Development and experimental validation of a continuum micromechanics model for the elasticity of wood[J]. European Journal of Mechanics-A/Solids, 2005, 24(6): 1030?053. doi:10.1016/j.euromechsol.2005.05.006 [22]Salmén L. Micromechanical understanding of the cell-wall structure[J]. Comptes Rendus Biologies, 2004, 327(9?0): 873?80. doi:10.1016/j.crvi.2004.03.010 [23]刘宇. 基于木材的高强纤维素材料的构建与力学性能的研究[D]. 广州: 华南理工大学, 2019.

    Liu Y. Fabrication of super strong cellulose based materials from wood and their mechanical properties[D]. Guangzhou: South China University of Technology, 2019. [24]Marklund E, Varna J. Micromechanical modelling of wood fibre composites[J]. Plastics, Rubber & Composites, 2009, 38(2?): 118?23. [25]Qing H, Mishnaevsky L. 3D multiscale micromechanical model of wood: from annual rings to microfibrils[J]. International Journal of Solids and Structures, 2010, 47(9): 1253?267. doi:10.1016/j.ijsolstr.2010.01.014 [26]Jin K, Qin Z, Buehler M J. Molecular deformation mechanisms of the wood cell wall material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198?06. doi:10.1016/j.jmbbm.2014.11.010 [27]Gangwar T, Schillinger D. Microimaging-informed continuum micromechanics accurately predicts macroscopic stiffness and strength properties of hierarchical plant culm materials[J]. Mechanics of Materials, 2019, 130: 39?7. doi:10.1016/j.mechmat.2019.01.009 [28]Hofstetter K, Hellmich C, Eberhardsteiner J. Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials: a review and an improved approach[J]. Holzforschung, 2007, 61(4): 343?51. doi:10.1515/HF.2007.058 [29]沈观? 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版? 2013.

    Shen G L, Hu G K, Liu B. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2013. [30]Fei G, Clemens M A, Michael C J. Thickness-dependent stiffness of wood: potential mechanisms and implications[J]. Holzforschung, 2020, 74(12): 1079?087. doi:10.1515/hf-2019-0311 [31]Horbelt N, Dunlop J W C, Bertinetti L, et al. Effects of moisture and cellulose fibril angle on the tensile properties of native single Norway spruce wood fibres[J]. Wood Science and Technology, 2021, 55(5): 1305?318. doi:10.1007/s00226-021-01315-4 [32]Ji Z, Ma J, Zhang Z, et al. Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensisdetermined by fluorescence microscopy and confocal Raman microscopy[J]. Industrial Crops and Products, 2013, 47: 212?17. doi:10.1016/j.indcrop.2013.03.006
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?13)/ ?5)
    计量
    • 文章访问?75
    • HTML全文浏览野43
    • PDF下载野28
    • 被引次数:0
    出版历程
    • 收稿日期:2022-12-14
    • 录用日期:2023-03-20
    • 修回日期:2023-03-01
    • 网络出版日期:2023-03-21
    • 刊出日期:2023-04-25

    目录

      Baidu
      map