留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

不同恢复模式亚热带森林土壤贮水量和养分储量的差异

马耀卍/a>,刘虹?/a>,李雨欢/a>,李鑫,刘斌,杨世赞/a>,曾施?/a>,卜文圢/a>

downloadPDF
马耀? 刘虹? 李雨? 李鑫, 刘斌, 杨世? 曾施? 卜文? 不同恢复模式亚热带森林土壤贮水量和养分储量的差异[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220365
引用本文: 马耀? 刘虹? 李雨? 李鑫, 刘斌, 杨世? 曾施? 卜文? 不同恢复模式亚热带森林土壤贮水量和养分储量的差异[J]. 北京林业大学学报.doi:10.12171/j.1000-1522.20220365
Ma Yaohua, Liu Hongbing, Li Yuxin, Li Xin, Liu Bin, Yang Shiyun, Zeng Shiqi, Bu Wensheng. Variations of soil water and nutrient storages in subtropical forests under different restoration models[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220365
Citation: Ma Yaohua, Liu Hongbing, Li Yuxin, Li Xin, Liu Bin, Yang Shiyun, Zeng Shiqi, Bu Wensheng. Variations of soil water and nutrient storages in subtropical forests under different restoration models[J].Journal of Beijing Forestry University.doi:10.12171/j.1000-1522.20220365
doi:10.12171/j.1000-1522.20220365
基金项目:江西省自然科学基金项目(20202ACBL215005),江西省林业科技创新项目 (创新专项?022?? 国家自然科学基金项目?1760134(/div>
详细信息
    作者简今

    马耀华。主要研究方向:森林土壤。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:mayaohua1997@163.com">mayaohua1997@163.com 地址?30045 江西省南昌市经济技术开发区志敏大道1101叶/p>

    责任作耄

    卜文圣,博士,副研究员。主要研究方向:群落结构与动态。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:bws2007@163.com">bws2007@163.com 地址:同三/span>

Variations of soil water and nutrient storages in subtropical forests under different restoration models

  • 摘要: 目的随着工业化进程加快,大量天然林遭到破坏,导致森林的数量和质量显著下降,因此采取了许多植被恢复措施,其主要方式有人工恢复和自然恢复模式。研究这两种不同恢复模式下林分的土壤贮水量和养分储量的差异,有助于比较这两种模式的优劣性,为亚热带植被恢复和重建提供理论依据、/sec> 方法本研究选择九连山皆伐后自然恢复35年的次生林、人工栽植杉木后自然恢复39年的杉木林、以及保存完好的原始林等3个典型林分为对象,比较不同恢复模式在水源涵养和养分贮存能力上的差异、/sec> 结果研究结果表明:在贮水能力上,杉木林、次生林的吸持贮水量和饱和贮水量明显低于原始林,但在滞留贮水量上,杉木林、次生林却显著高于原始林,而杉木林和次生林在贮水量上较相似;在土壤养分贮存方面,原始林和次生林的速效氮储量均显著高于杉木林,但杉木林的有效磷储量显著高于次生林和原始林;原始林的碳储量、全氮储量和全磷储量均明显高于杉木林和次生林,且杉木林的碳储量、全氮储量显著高于次生林,但杉木林的全磷储量却显著低于次生林、/sec> 结论两种恢复模式在土壤水源涵养方面相似,而在养分贮存能力上存在很大的差异,需要依据不同的生态恢复目标而选用不同的恢复模式,提高土壤速效氮和全磷储量宜采用自然恢复模式,提高土壤有效磷、碳储量和全氮储量宜采用人工恢复模式、/sec>

  • ?nbsp; 1不同林分类型的贮水量

    WASC、SSC、SWS分别表示吸持贮水量、滞留贮水量、饱和贮水量;不同小写字母表示不同林分类型之间差异显著(P< 0.05)。下同。WASC, SSC, and SWS represent absorbed water storage, retention water storage, and saturated water storage, respectively; different lowercase letters indicate significant differences between different stands (P< 0.05). The same below.

    Figure 1.Water storage capacity of different stand types

    ?nbsp; 2不同林分类型的贮水量、有效养分储量、全量养分储量的非度量多维标定图

    Figure 2.Non-metric multi-dimensional calibration maps of water storage, available nutrient storage and total nutrient storage for three standss

    ?nbsp; 3不同林分类型的速效氮储量、有效磷储量

    CLP、SF、PF分别代表杉木林、次生林、原始林;不同小写字母代表不同林分类型之间差异显著。CLP, SF and PF represent Chinese fir forest, secondary forest and primary forest, respectively; different lowercase letters represent significant differences between different stands.

    Figure 3.Available nitrogen storage and available phosphorus storage of different stand types

    ?nbsp; 4不同林分类型的全量养分储野/p>

    CLP、SF、PF分别代表杉木林、次生林、原始林;不同小写字母代表不同林分之间差异显著。CLP, SF and PF represent Chinese fir forest, secondary forest and primary forest, respectively; different lowercase letters represent significant differences between different stands.

    Figure 4.Total nutrient storage of different stand types

    ?nbsp; 2不同林分类型的土壤养分含野/p>

    Table 2.Soil nutrient content of different stand types

    林分类型
    Stand type
    碳含野br/>carbon content/(g·kg?) 全氮含量
    Total nitrogen content/(g·kg?)
    全磷含量
    Total phosphorus content/(g·kg?)
    碳氮毓br/>C/N 碳磷毓br/>C/P 氮磷毓br/>N/P 速效氮含野br/>Available nitrogen content/(mg·kg?) 有效磷含野br/>Available phosphorus content/(mg·kg?)
    杉木枖br/>Chinese Fir Forest (CLP) 47.03 ± 2.43b 3.98 ± 0.17ab 0.65 ± 0.02b 11.82 ± 0.35a 72.40 ± 3.54a 6.16 ± 0.27a 7.57 ± 0.43c 14.25 ± 1.28a
    次生枖br/>Secondary Forest (SF) 36.41 ± 1.40c 3.76 ± 0.28b 0.85 ± 0.07a 10.44 ± 0.59b 46.23 ± 2.41c 4.67 ± 0.32b 12.35 ± 0.57b 11.03 ± 0.62a
    原始枖br/>Primary forest (PF) 56.16 ± 2.75a 4.50 ± 0.20a 0.90 ± 0.03a 12.57 ± 0.31a 62.89 ± 2.41b 5.07 ± 0.23b 14.74 ± 0.76a 7.10 ± 1.40b
    注:同列不同小写字母表示不同林分类型之间差异显著。下同。Notes: different lowercase letters in the same column indicate significant differences between different stands. The same below.
    下载: 导出CSV
  • [2]刘斌, 张参? 汪金? ? 江西九连山不同恢复模式林分的物种多样性特征[J]. 林业科学研究, 2020, 33(4): 42?2.

    Liu B, Zhang C C, Wang J S, et al. Characteristic of species diversity in stands of different restoration models in Jiulian Mountain Jiangxi Province[J]. Forest Research, 2020, 33(4): 42?2. [3]陈孙? 衡阳紫色土丘陵坡地不同植被恢复阶段植物群落特征及其与土壤理化性质的耦合关系[J]. 水土保持研究, 2014(5): 7?2. doi:10.13869/j.cnki.rswc.2014.05.002

    Chen S H. Coupling relationship between plant community characteristics and soil physic chemical Properties at different revegetation stages on sloping lands with purple soil in Hengyang of Hu’nan Province, China[J]. Research of Soil and Water Conservation, 2014(5): 7?2. doi:10.13869/j.cnki.rswc.2014.05.002 [4]李张? 九连山人工和自然恢复森林物种多样性特征及其环境解释[D]. 南昌: 江西农业大学, 2019.

    Li Z M. The characteristics of species diversity and its environmental explanation in the artificial and natural restored Forests of JiuLian Mountain[D]. Nanchang: Jiangxi Agricultural University, 2019. [5]程欢, 付雨? 董洪? ? 川中丘陵区不同植被类型土壤理化性质及水文效应[J]. 应用与环境生物学? 2019, 25(4): 845?53.

    Cheng H, Fu Y X, Dong H J, et al. Physical and chemical properties of soil and the hydrological effects of different vegetation types in the central Sichuan hilly region[J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(4): 845?53. [6]袁在? 关庆? 李俊? ? 不同植被恢复模式对紫金山森林土壤理化性质的影响[J]. 东北林业大学学报, 2022, 50(1): 52?7. doi:10.3969/j.issn.1000-5382.2022.01.009

    Yuan Z X, Guan Q W, Li J J, et al. Effect of various vegetation restoration types on soil physio-chemical properties[J]. Journal of Northeast Forestry University, 2022, 50(1): 52?7. doi:10.3969/j.issn.1000-5382.2022.01.009 [7]禹娟? 包振? 王秉? ? 不同植被恢复模式对土壤理化性质的影响[J]. 人民黄河, 2015, 37(2): 94?8.

    Yu J H, Bao Z G, Wang B Z, et al. Effect of different vegetation restoration patterns on soil physical and chemical properties[J]. Yellow River, 2015, 37(2): 94?8. [8]Hua F Y, Bruijnzee L A, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches[J]. Science, 2022, 376: 839?44. doi:10.1126/science.abl4649 [9]刘留? 邢世? 高承? ? 国内外土壤碳储量研究进展和存在问题及展望[J]. 土壤通报, 2009(3): 697?01.

    Liu L H, Xin S H, Gao C F, et al. The research progress, problems and prospects of soil carbon storage at home and board[J]. Chinese Journal of Soil Science, 2009(3): 697?01. [10]詹书? 陈伏? 胡小? ? 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学? 2009, 29(9): 4673?680. doi:10.3321/j.issn:1000-0933.2009.09.010

    Zhan S X, Chen F S, Hu X F, et al. Soil nitrogen and phosphorus availability in forest ecosystems at different stages of succession in the central subtropical region[J]. Acta Ecologica Sinica, 2009, 29(9): 4673?680. doi:10.3321/j.issn:1000-0933.2009.09.010 [11]陈婵, 张仕? 李雷? ? 中亚热带植被恢复阶段植物叶片, 凋落? 土壤碳氮磷化学计量特征[J]. 植物生态学? 2019, 43(8): 658. doi:10.17521/cjpe.2019.0018

    Chen C, Zhang S J, Li L D, et al. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 658. doi:10.17521/cjpe.2019.0018 [12]Gao Y, He N, Yu G, et al. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China[J]. Ecological Engineering, 2014, 67: 171?81. doi:10.1016/j.ecoleng.2014.03.013 [13]何高? 王越, 彭淑? ? 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学? 2020, 40(13): 4425?435.

    HeG X, Wang Y, Peng S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425?435. [14]卫茂? 一次取样连续测定土壤物理性质的方法[J]. 辽宁林业科技, 1990(1): 56?7.

    Wei M R. A method for continuous determination of soil physical properties by one sampling[J]. Liaoning Forestry Science and Technology, 1990(1): 56?7. [15]贺翔, 徐长? 宋美? ? 东祁连山金露梅灌丛不同恢复期碳储量和土壤养分变化[J]. 草业科学, 2019, 36(3): 612?22.

    He X, Xu C L, Song M J, et al. Study on carbon storage and soil nutrient changes at different restoration stages of potentilla parvifolia shrubs in Eastern Qilian Mountains[J]. Pratacultural Science, 2019, 36(3): 612?22. [16]温林? 邓文? 彭云, ? 江西退化红壤区3种森林恢复模式的枯落物和土壤表层水文功能研究[J]. 水土保持学报, 2020, 34(4): 158?63. doi:10.13870/j.cnki.stbcxb.2020.04.024

    Wen L S, Deng W P, Peng Y, et al. The hydrological functions of litter and soil surface of three Forest restoration modes in degraded red soil area of Jiangxi Province[J]. Journal of Soil and Water Conservation, 2020, 34(4): 158?63. doi:10.13870/j.cnki.stbcxb.2020.04.024 [17]董凌? 海旭? 汪晓? ? 黄土高原退耕还草地植物群落动态对生态系统碳储量的影响[J]. 生态学? 2020, 40(23): 8559?569.

    Dong L B, Hai X Y, Wang X Z, et al. Effects of plant community dynamics on ecosystem carbon stocks since returning farmlands to grassl ands on the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8559?569. [18]漆良? 武陵山区小流域退化土地植被恢复生态学特性研究[D]. 北京: 中国林业科学研究? 2007.

    Qi L H. Ecological characteristics of vegetation restoration for ecological characteristics of vegetation restoration for degraded lands in a watershed, Wulin Mountain Region[D]. Beijing: Chinese Academy of Forestry, 2007. [19]曾掌? 田育? 邓鹰? ? 不同植被恢复模式地表径流与土壤贮水能力研究[J]. 湖南林业科技, 2016, 43(4): 81?5. doi:10.3969/j.issn.1003-5710.2016.04.016

    Zeng Z Q, Tian Y X, Deng Y H, et al. Effect of different vegetation restoration patterns on soil physical and chemical properties[J]. Hunan Forestry Science & Technology, 2016, 43(4): 81?5. doi:10.3969/j.issn.1003-5710.2016.04.016 [20]辛颖. 阿什河上游天然次生林与人工林小流域水文生态效益对比研究[D]. 哈尔? 东北林业大学, 2011.

    Xin Y , Comparison of hydrological ecology between secondary forest and artificial forest small watershed in the upper reaches of ashihe river[D]. Harbin: Northeast Forestry University, 2011. [21]周刚. 湖南省水土保持林树种选择及配置模式研究[D]. 北京: 北京林业大学, 2008.

    Zhou G. Study on the trees species selection and configuration model for soil and water conservation forest in Hunan Province[D]. Beijing: Beijing Forestry University, 2008. [22]Gomi T, Sidle R C, Ueno M, et al. Characteristics of overland flow generation on steep forested hillslopes of central Japan[J]. Journal of Hydrology, 2008, 361(3-4): 275?90. doi:10.1016/j.jhydrol.2008.07.045 [23]Ghahramani A, Ishikawa Y, Gomi T, et al. Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study[J]. Catena, 2011, 85(1): 34?7. doi:10.1016/j.catena.2010.11.005 [24]张慧? 兴安落叶松林生态系统关键生态过程碳氮分配及其耦合特征研究[D]. 呼和浩特: 内蒙古农业大? 2017.

    Zhang H D. Study on carbon/nitrogen distribution and its coupling characteristics of key ecological processes in larch ( Larix gmelinii) forest ecosystem[D]. Hohhot: Inner Mongolia Agricultural University, 2017. [25]徐小? 田汉? 万师? 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学? 2007, 31(2): 175?88.

    Xu X F, Tain H L,Wang S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 175?88. [26]Li Z, Liu C, Dong Y, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China[J]. Soil and Tillage Research, 2017, 166: 1?. doi:10.1016/j.still.2016.10.004 [27]欧阳园丽, 吴小? 林小? ? 九连山自然保护区土壤有机碳时空变异的耦合效应[J]. 森林与环境学? 2020, 40(6): 561?68.

    Ouya Y L, Wu X G, Lin X F, et al. Coupling effect of spatial- temporal variation in soil organic carbon in the Jiulianshan National Nature Reservein[J]. Journal of Forest and Environment, 2020, 40(6): 561?68. [28]张参? 吴小? 刘斌, ? 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19?8. doi:10.13332/j.1000-1522.20180383

    Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19?8. doi:10.13332/j.1000-1522.20180383 [29]Mooney H A, Vitousek P M, Matson P A. Exchange of materials between terrestrial ecosystems and the atmosphere[J]. Science, 1987, 238: 926?32. doi:10.1126/science.238.4829.926 [30]Compton J, Mallinson D, Glenn C R, et al. Variations in the global phosphorus cycle//[M]. Glenn C R, Prevot-Lucas L. Marine authigenesis: from global to microbial. Tulsa: SEPM, 2000: 21?3. [31]徐丽, 何念? 中国森林生态系统氮储量分配特征及其影响因素[J]. 中国科学:地球科学, 2020, 50(10): 1374?385.

    Xu L, He N P. 2020. Nitrogen storage and allocation in China’s forest ecosystems[J]. Scientia Sinica (Terrae), 2020, 50(10): 1374?385. [32]Wang H, Liu S R, Mo J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6): 1071?079. doi:10.1007/s11284-010-0730-2
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?4)/ ?2)
    计量
    • 文章访问?140
    • HTML全文浏览野30
    • PDF下载野23
    • 被引次数:0
    出版历程
    • 收稿日期:2022-09-03
    • 录用日期:2022-12-01
    • 修回日期:2022-10-25
    • 网络出版日期:2022-12-03

    目录

      Baidu
      map