留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

金佛山方竹基础物性及其时空变化规徊/p>

刘文娞/a>,王滔,赵福泼/a>,林剑

downloadPDF
刘文? 王滔, 赵福? 林剑. 金佛山方竹基础物性及其时空变化规律[J]. 北京林业大学学报, 2023, 45(3): 127-136. doi: 10.12171/j.1000-1522.20220360
引用本文: 刘文? 王滔, 赵福? 林剑. 金佛山方竹基础物性及其时空变化规律[J]. 北京林业大学学报, 2023, 45(3): 127-136.doi:10.12171/j.1000-1522.20220360
Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Basic properties of Chimonobambusa utilis and its spatiotemporal variations[J]. Journal of Beijing Forestry University, 2023, 45(3): 127-136. doi: 10.12171/j.1000-1522.20220360
Citation: Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Basic properties ofChimonobambusa utilisand its spatiotemporal variations[J].Journal of Beijing Forestry University, 2023, 45(3): 127-136.doi:10.12171/j.1000-1522.20220360
doi:10.12171/j.1000-1522.20220360
基金项目:中央高校基本科研业务费专项(2021ZY23),国家自然科学基金项目?1700492(/div>
详细信息
    作者简今

    刘文娟。主要研究方向:木材科学与技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:lwj7621@163.com">lwj7621@163.com 地址?00083 北京市海淀区清华东?5号材料科学与技术学陡/p>

    责任作耄

    林剑,副教授。主要研究方向:木材科学与技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:linjian0702@bjfu.edu.cn">linjian0702@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S795.9;S781.9;[S785];[S727.15]

Basic properties ofChimonobambusa utilisand its spatiotemporal variations

  • 摘要: 目的为掌握金佛山方竹基础物性,探究其化学组分与物理力学性质随竹龄与轴向部位的变化规律,进而促进其秆材资源的合理高值化利用、/sec> 方法本研究以1 ~ 5年生天然金佛山方竹为研究对象,依据相应国家标准测定其化学组分含量(本文指的是质量分?与密度、干缩率、顺纹抗压强度、抗弯强度、弹性模量和硬度等物理力学性质,通过X射线衍射仪测定样品衍射曲线,进而计算其相对结晶度与微纤丝角度、/sec> 结果金佛山方竹各化学组分含量随竹龄与轴向部位小幅度波动变化,且变化规律不显著。结晶度随竹龄增加先增大后逐渐减小?年生最大,?0.39%,并随轴向部位升高逐渐增大。微纤丝角度随竹龄增加与轴向部位升高均先减小后增大,2年生中部最小,?.10°。基本密度为0.513 ~ 0.693 g/cm 3,全干密度为0.535 ~ 0.725 g/cm 3,气干密度为0.556 ~ 0.756 g/cm 3;各密度随竹龄增加与轴向部位升高均呈上升趋势? ~ 2年间显著增大,随后平稳增加至趋于稳定。全干干缩率和气干干缩率随竹龄增加与轴向部位升高均呈下降趋势? ~ 2年间显著下降,随后平稳下降,后者波动性相对较大。顺纹抗压强度为50.73 ~ 64.58 MPa,抗弯强度为114.09 ~ 134.26 MPa,弹性模量为8.45 ~ 12.42 GPa,三者均随竹龄增加均呈上升—下降—上升趋势,随轴向部位升高均呈上升趋势;内外侧硬度平均值为60.00 ~ 72.70 HD,其随竹龄增加与轴向部位升高均呈上升趋势。金佛山方竹的干缩率、顺纹抗压强度、抗弯弹性模量和硬度均受解剖构造与主要化学组分显著影响、/sec> 结论金佛山方竹竹龄与竹秆轴向部位均影响其基础物性,但竹龄的影响更加显著?年以上金佛山方竹秆材质基本成熟,可作为金佛山方竹的较佳砍伐竹龄。此外,物理力学性质与解剖构造和主要化学组分间存在一定的显著相关性、/sec>

  • ?nbsp; 1不同竹龄(a)与竹秆轴向部位(b)的X射线衍射曲线

    Figure 1.XRD profile of different bamboo ages (a) and axial parts of bamboo culm (b)

    ?nbsp; 2不同竹龄(a)与竹秆轴向部位(b)的密度变化

    Figure 2.Density variation of different bamboo ages (a) and axial parts of bamboo culm (b)

    ?nbsp; 1不同竹龄与竹秆轴向部位的各化学组分含野/p>

    Table 1.Chemical composition content of different bamboo ages and axial parts of bamboo culm

    竹龄/a Bamboo age/year 轴向部位 Axial part 综纤维素
    Holocellulose/%
    α-纤维
    α-cellulose/%
    戊聚
    Pentosan/%
    酸不溶木质素
    Klason
    lignin/%

    Starch/%
    灰分
    Ash/%
    冷水抽提?br/> Cold water extract/% 热水抽提
    Hot water
    extract/%
    1%NaOH
    抽提
    1% NaOH
    extract/%
    苯醇抽提 Benzene alcohol extract/%
    1 中部
    Middle
    70.51 ± 0.33a 47.72 ± 0.27a 21.93 ± 0.30a 25.71 ± 0.17b 2.28 ± 0.09c 1.99 ± 0.01a 4.89 ± 0.19a 6.66 ± 0.97a 24.61 ± 0.51b 3.64 ± 0.20c
    2 中部
    Middle
    70.40 ± 0.04ab 45.01 ± 0.25c 19.79 ± 0.88a 26.50 ± 0.42a 2.63 ± 0.10b 1.36 ± 0.03c 4.10 ± 0.25bc 5.59 ± 0.23ab 26.45 ± 0.56a 3.62 ± 0.16c
    3 中部
    Middle
    70.95 ± 0.49a 45.70 ± 0.68bc 21.18 ± 0.51a 26.00 ± 0.15ab 3.61 ± 0.15a 0.91 ± 0.02e 3.29 ± 0.46d 4.61 ± 0.66b 26.72 ± 0.30a 3.84 ± 0.19c
    4 中部
    Middle
    70.64 ± 0.25a 47.84 ± 0.27a 22.01 ± 1.34a 26.19 ± 0.31ab 1.49 ± 0.06d 1.48 ± 0.06b 4.23 ± 0.13b 5.32 ± 0.10b 24.86 ± 0.59b 4.57 ± 0.32b
    5 中部
    Middle
    69.15 ± 0.77b 46.58 ± 0.94b 21.76 ± 0.45a 25.72 ± 0.27b 0.46 ± 0.02e 1.27 ± 0.03d 3.60 ± 0.14cd 5.12 ± 0.21b 26.15 ± 0.71a 5.40 ± 0.13a
    3 上部 Top 69.39 ± 1.07ab 48.65 ± 0.63a 21.21 ± 0.24a 26.23 ± 0.26b 2.94 ± 0.12b 0.92 ± 0.05b 2.02 ± 0.18b 4.24 ± 0.24a 24.07 ± 0.31c 2.88 ± 0.40a
    3 中部
    Middle
    70.95 ± 0.49a 45.70 ± 0.68b 21.18 ± 0.51a 26.00 ± 0.15b 3.61 ± 0.15a 0.91 ± 0.02b 3.29 ± 0.46a 4.61 ± 0.66a 26.72 ± 0.30a 3.84 ± 0.19a
    3 下部
    Bottom
    68.14 ± 1.15b 46.07 ± 0.50b 20.23 ± 0.22a 26.82 ± 0.35a 2.15 ± 0.08c 1.10 ± 0.05a 2.11 ± 0.41b 4.33 ± 0.35a 24.86 ± 0.20b 3.95 ± 0.86a
    注:含量指的是质量百分数。不同小写字母表示不同竹龄与轴向部位间同种指标差异显著(P< 0.05)。下同。Notes: content refers to the percentage by mass. Different lowercase letters indicate significant differences in the same index between different bamboo ages and axial positions (P<0.05). The same below.

    ?nbsp; 3不同竹龄与竹秆轴向部位的全干干缩率与气干干缩玆/p>

    Table 3.Oven-dried and air-dried shrinking ratios of different bamboo ages and axial parts of bamboo culm %

    竹龄/a
    Bamboo
    age/year
    轴向部位
    Axial part
    全干干缩 Oven-dried shrinking ratio 气干干缩 Air-dried shrinking ratio
    纵向
    Axial
    弦向
    Tangential
    径向
    Radial
    体积
    Volume
    纵向
    Axial
    弦向
    Tangential
    径向
    Radial
    体积
    Volume
    1 Middle 0.328 ± 0.220a 6.567 ± 1.200a 6.901 ± 1.200a 13.298 ± 1.710a 0.417 ± 0.310a 3.983 ± 1.280a 3.160 ± 1.110a 7.401 ± 1.880a
    2 Middle 0.315 ± 0.150a 5.490 ± 0.850b 5.848 ± 1.190ab 11.225 ± 1.710b 0.276 ± 0.150a 2.736 ± 0.530b 2.091 ± 0.940b 5.031 ± 1.250b
    3 Middle 0.305 ± 0.270a 5.153 ± 0.890b 5.813 ± 1.140ab 11.193 ± 1.220b 0.344 ± 0.290a 2.881 ± 1.260b 2.635 ± 1.590ab 5.759 ± 2.290b
    4 Middle 0.289 ± 0.160a 5.153 ± 0.650b 5.798 ± 2.130ab 10.915 ± 1.930b 0.326 ± 0.390a 2.235 ± 0.830b 2.073 ± 1.390b 4.570 ± 1.790b
    5 Middle 0.281 ± 0.180a 5.450 ± 0.830b 5.477 ± 1.600b 10.876 ± 1.840b 0.359 ± 0.310a 2.853 ± 0.800b 2.866 ± 1.970ab 5.968 ± 2.460ab
    3 Top 0.357 ± 0.170ab 5.120 ± 0.660a 5.181 ± 1.720a 10.354 ± 1.840a 0.318 ± 0.110a 2.458 ± 0.840a 2.673 ± 1.140a 5.368 ± 1.250a
    3 Middle 0.305 ± 0.270b 5.153 ± 0.890a 5.813 ± 1.140a 11.193 ± 1.220a 0.344 ± 0.290a 2.881 ± 1.260a 2.635 ± 1.590a 5.759 ± 2.290a
    3 Bottom 0.499 ± 0.240a 5.162 ± 0.750a 5.286 ± 0.990a 10.625 ± 1.060a 0.419 ± 0.300a 2.883 ± 0.840a 2.668 ± 1.020a 5.871 ± 1.220a
    下载: 导出CSV

    ?nbsp; 2不同竹龄与竹秆轴向部位的结晶度和微纤丝角?/p>

    Table 2.Crystallinity and microfiber angle of different bamboo ages and axial parts of bamboo culm

    竹龄/a
    Bamboo age/year
    轴向部位
    Axial part
    结晶?br/>Crystallinity/% 微纤丝角?br/>Microfibril angle/(°)
    1 中部 Middle 46.88 10.66
    2 中部 Middle 50.39 9.10
    3 中部 Middle 47.23 10.61
    4 中部 Middle 44.54 10.38
    5 中部 Middle 42.73 10.55
    3 上部 Top 49.24 11.24
    3 中部 Middle 47.23 10.61
    3 下部 Bottom 47.06 11.14
    下载: 导出CSV

    ?nbsp; 4不同竹龄与竹秆轴向部位的各力学性质

    Table 4.Mechanical properties of different bamboo ages and axial parts of bamboo culm

    竹龄/a
    Bamboo age/year
    轴向部位
    Axial part
    顺纹抗压强度
    Compression strength/MPa
    抗弯强度
    Modulus of rapture/MPa
    弹性模
    Modulus of elasticity
    (MOE)/GPa
    硬度 Hardness/HD
    外侧 Outside 内侧 Inside 平均 Mean
    1 Middle 55.09 ± 6.30bc 114.09 ± 13.25a 11.86 ± 1.49a 77.80 ± 1.43b 42.20 ± 1.17d 60.00 ± 1.12c
    2 Middle 61.35 ± 5.07ab 129.73 ± 9.55a 12.15 ± 1.88a 82.60 ± 1.70a 47.13 ± 1.50c 64.87 ± 1.39b
    3 Middle 58.52 ± 6.22ab 123.20 ± 15.55a 12.00 ± 1.59b 80.47 ± 3.03a 52.33 ± 4.02b 66.40 ± 2.73b
    4 Middle 50.73 ± 4.64c 117.29 ± 11.37a 11.05 ± 0.65c 82.33 ± 1.78a 52.87 ± 3.39b 67.60 ± 2.18b
    5 Middle 64.58 ± 10.83a 122.97 ± 26.05a 12.42 ± 1.33c 81.87 ± 2.13a 63.53 ± 4.40a 72.70 ± 3.04a
    3 Top 59.32 ± 2.78a 134.26 ± 8.26a 12.08 ± 0.48a 75.40 ± 2.49b 68.40 ± 3.17a 71.90 ± 2.44a
    3 Middle 58.52 ± 6.22a 123.20 ± 15.55a 12.00 ± 1.59a 80.47 ± 3.03a 52.33 ± 4.02b 66.40 ± 2.73b
    3 Bottom 51.61 ± 5.84b 97.87 ± 18.26b 8.45 ± 1.38b 80.67 ± 2.98a 50.80 ± 1.71b 65.73 ± 1.50b
    下载: 导出CSV

    ?nbsp; 5物理力学性质与解剖构造各指标间的相关系数

    Table 5.Correlation coefficients between physical-mechanical properties and anatomical structure indicators

    指标
    Index
    密度 Density 体积干缩 Shrinking ratio 顺纹抗压强度
    Compression
    strength
    抗弯强度
    MOR
    MOE 硬度
    Hardness
    基本
    Basic
    气干
    Air-dried
    全干
    Oven-dried
    气干
    Air-dried
    全干
    Oven-dried
    组织比量
    Tissue percentage
    基本组织
    Basic tissue
    ?.540 ?.623 ?.608 0.826 0.767 0.311 ?.209 0.512 ?.442
    纤维组织
    Fiber tissue
    0.740 0.791 0.775 ?.938* ?.905* ?.120 0.403 ?.378 0.595
    输导组织
    Conducting tissue
    0.174 0.291 0.279 ?.538 ?.453 ?.528 ?.094 ?.616 0.159
    维管杞br/> Vascular bundle 密度 Density 0.485 0.565 0.536 ?.907* ?.730 ?.275 0.405 ?.475 0.277
    径向宽度
    Radial width
    0.155 ?.012 0.030 0.465 ?.037 0.768 0.096 0.780 0.514
    弦向宽度
    Tangential width
    0.259 0.063 0.095 0.256 ?.235 0.942* 0.446 0.907* 0.574
    纤维细胞
    Fiber cell
    长度 Length ?.542 ?.405 ?.414 0.118 0.302 ?.730 ?.526 ?.592 ?.492
    宽度 Width ?.747 ?.675 ?.707 0.279 0.701 ?.400 ?.133 ?.210 ?.961**
    腔径
    Lumen diameter
    ?.653 ?.645 ?.627 0.880* 0.913* ?.158 ?.681 0.078 ?.567
    双壁厙br/> Double wall thickness 0.142 0.336 0.305 ?.532 ?.069 ?.876 ?.343 ?.957* ?.247
    腔径毓br/> Lumen-width ratio ?.392 ?.537 ?.505 0.843 0.517 0.604 ?.084 0.774 ?.079
    壁腔毓br/> Thickness-lumen ratio 0.339 0.507 0.474 ?.764 ?.358 ?.722 ?.071 ?.872 ?.042
    薄壁细胞
    Parenchyma cell
    长度 Length ?.607 ?.611 ?.622 0.180 0.173 ?.046 0.138 0.105 ?.415
    宽度 Width ?.605 ?.606 ?.603 0.327 0.213 ?.082 ?.091 0.086 ?.306
    腔径
    Lumen diameter
    ?.659 ?.652 ?.651 0.345 0.271 ?.123 ?.108 0.059 ?.385
    双壁厙br/> Double wall thickness ?.226 ?.269 ?.251 0.181 ?.138 0.153 0.018 0.224 0.168
    腔径毓br/> Lumen-width ratio ?.860 ?.790 ?.817 0.343 0.685 ?.415 ?.170 ?.192 ?.954*
    壁腔毓br/> Thickness-lumen ratio 0.849 0.785 0.813 ?.329 ?.670 0.380 0.124 0.161 0.947*
    结晶 Crystallinity ?.468 ?.474 ?.511 ?.054 0.245 0.029 0.473 0.119 ?.647
    微纤丝角 Microfibril angle ?.224 ?.187 ?.151 0.499 0.254 ?.271 ?.757 ?.161 0.098
    综纤维素 Holocellulose ?.524 ?.390 ?.422 ?.120 0.242 ?.672 ?.168 ?.567 ?.657
    α-纤维 α-cellulose ?.102 0.030 0.046 0.283 0.401 ?.684 ?.944* ?.623 ?.150
    酸不溶木质素 Klason lignin 0.303 0.346 0.302 ?.779 ?.441 ?.098 0.628 ?.250 ?.068
    多戊 Pentosan ?.032 0.051 0.082 0.348 0.235 ?.458 ?.882* ?.405 0.121
    注:*表示?i>P< 0.05水平上显著相关,**表示?i>P< 0.01水平上显著相关。Notes: * means significant correlation at the level ofP< 0.05, and ** means significant correlation at the level ofP< 0.01.
    下载: 导出CSV
  • [2]付建? 阔叶箬竹基本性质和应用初探[D]. 合肥: 安徽农业大学, 2014.

    Fu J H. A preliminary study on the application and on the basic properties of Indocalamus latifolius[D]. Hefei: Anhui Agricultural University, 2014. [3]杨喜, 刘杏? 杨淑? ? 5种丛生竹材物理力学性质的比较[J]. 东北林业大学学报, 2013, 41(10): 91?3. doi:10.3969/j.issn.1000-5382.2013.10.019

    Yang X, Liu X E, Yang S M, et al. Comparison of physical-mechanical properties of five sympodial bamboo species[J]. Journal of Northeastern Forestry University, 2013, 41(10): 91?3. doi:10.3969/j.issn.1000-5382.2013.10.019 [4]黄兴? 硬头黄竹材性变异规律及耐老化性能研究[D]. 雅安: 四川农业大学, 2015.

    Huang X Y. Variation in bamboo properties of Bambusa rigidaand investigation of its aging resistance[D]. Yaan: Sichuan Agricultural University, 2015. [5]Huang W, Li Y, Niklas K J, et al. A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo[J]. Symmetry, 2020, 12(12): 2073?087. doi:10.3390/sym12122073 [6]赵树? 桐梓方竹发展记[J]. 中国林业产业, 2020, 17(11): 73?7.

    Zhao S C. The development of Tongzi square bamboo[J]. China Forestry Industry, 2020, 17(11): 73?7. [7]娄义? 金佛山方竹垂直分布及低海拔异地引种后笋产量和品质[J]. 世界竹藤通讯, 2021, 19(1): 24?3.

    Lou Y L. Vertical distribution of Chimonobambusa utilisand its shoot yield and quality after introduced to different places at low elevation[J]. World Bamboo and Rattan, 2021, 19(1): 24?3. [8]任春? 贾玉? 娄义? ? 贵州金佛山方竹笋营养及功能成分剖析[J]. 食品与发酵工? 2021, 47(10): 214?21.

    Ren C C, Jia Y L, Lou Y L, et al. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis, Guizhou[J]. Food and Fermentation Industries, 2021, 47(10): 214?21. [9]娄义? 金佛山方竹适生土壤特性及其形态多样性调查[J]. 世界竹藤通讯, 2021, 19(2): 48?2.

    Lou Y L. Investigation of workable soil characteristics and morphological diversity of Chimonobambusa utilis[J]. World Bamboo and Rattan, 2021, 19(2): 48?2. [10]娄义? 陈荣? 张果, ? 金佛山方竹在黔中竹海森林公园不同类型林地上的造林效果[J]. 世界竹藤通讯, 2021, 19(6): 61?4.

    Lou Y L, Chen R X, Zhang G, et al. Afforestation effect of Chimonobambusa utilisat forestland of different types in bamboo forest park in central Guizhou Province[J]. World Bamboo and Rattan, 2021, 19(6): 61?4. [11]娄义? 大娄山区金佛山方竹种子营养成分与播种育苗[J]. 世界竹藤通讯, 2021, 19(5): 25?3.

    Lou Y L. Seed nutrients and seedling breeding of Chimonobambusa utilisin Daloushan Mountains[J]. World Bamboo and Rattan, 2021, 19(5): 25?3. [12]林金? 赖根? 郑国? ? 方竹材基本密度和干缩性变异规律的研究[J]. 西北林学院学? 2004, 19(2): 112?15. doi:10.3969/j.issn.1001-7461.2004.02.033

    Lin J G, Lai G M, Zheng G F, et al. Variation law of basic density and shrinkage of Chimonobambusa quadrangularis[J]. Journal of Northwest Forestry University, 2004, 19(2): 112?15. doi:10.3969/j.issn.1001-7461.2004.02.033 [13]刘文? 章亮, 张文? ? 金佛山方竹材的热解及产物性能研究[J]. 竹子学报, 2018, 37(3): 85?2.

    Liu W F, Zhang L, Zhang W B, et al. Pyrolysis of Chimonobabusa utilis(Keng) Keng f. and characteristics of its carbonization products[J]. Journal of Bamboo Research, 2018, 37(3): 85?2. [14]张雨, 徐佳? 张文? ? 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5): 981?89.

    Zhang Y, Xu J J, Zhang W B, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang A&F University, 2019, 36(5): 981?89. [15]邓珺? 包善? 丁显? ? 中国方竹种质资源库建设探讨[J]. 防护林科技, 2020, 38(10): 81?3.

    Deng J H, Bao S F, Ding X P, et al. Construction of chinese chimonobambusa utilis germplasm resource bank[J]. Protected Forest Science and Technology, 2020, 38(10): 81?3. [16]Shi J Y, Zhang Y X, Zhou D Q, et al. Illustrated flora of Bambusoideae in China[M]. Singapore City: Science Press and Springer Nature Singapore Pte Ltd, 2020. [17]Segal L C, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786?94. doi:10.1177/004051755902901003 [18]张卫? 基于SPSS的试剂中氯元素含量的单因素方差分析[J]. 工业控制计算? 2017, 30(6): 34?5.

    Zhang W L. One-way ANOVA of elemental chlorine content in reagents based on SPSS[J]. Industrial Control Computer, 2017, 30(6): 34?5. [19]史正? 辉朝? 袁清? 云南甜竹化学成分分析[J]. 世界竹藤通讯, 2009, 7(2): 10?3. doi:10.3969/j.issn.1672-0431.2009.02.004

    Shi Z J, Hui Z M, Yuan Q Q. A study on chemical composition of Dendrocalamus brandisiiin Yunnan[J]. World Bamboo and Rattan, 2009, 7(2): 10?3. doi:10.3969/j.issn.1672-0431.2009.02.004 [20]江泽? 于文? 余养? 竹材化学成分分析和表面性能表征[J]. 东北林业大学学报, 2006, 50(4): 1?. doi:10.3969/j.issn.1000-5382.2006.04.001

    Jiang Z H, Yu W J, Yu Y L. Analysis of chemical components of bamboo wood and characteristic of surface performance[J]. Journal of Northeastern Forestry University, 2006, 50(4): 1?. doi:10.3969/j.issn.1000-5382.2006.04.001 [21]杨淑? 植物纤维化学[M]. 北京: 中国轻工业出版社, 2005.

    Yang S H. Lignocellulosic chemistry[M]. Beijing: China Light Industry Press, 2005. [22]曹钰, 王新? 李延? ? 高温油热处理对竹材淀粉含量及防霉性能的影响[J]. 林业工程学报, 2020, 5(2): 109?15.

    Cao Y, Wang X Z, Li Y J, et al. Effect of high temperature oil heat treatment on the starch content and mold-resistant property of bamboo[J]. Journal of Forestry Engineering, 2020, 5(2): 109?15. [23]刘瑞? 成聃? 史正? ? 薄壁型巨龙竹秆材化学成分分析[J]. 世界竹藤通讯, 2014, 12(5): 22?5.

    Liu R H, Cheng D R, Shi Z J, et al. A study of chemical composition of Dendrocalamus sinicuswith thin culm wall[J]. World Bamboo and Rattan, 2014, 12(5): 22?5. [24]Gu J, Catchmark J M. The impact of cellulose structure on binding interactions with hemicellulose and pectin[J]. Cellulose, 2013, 20(4): 1613?627. doi:10.1007/s10570-013-9965-8 [25]French A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2): 885?96. doi:10.1007/s10570-013-0030-4 [26]杨淑? 江泽? 任海? ? 利用X-射线衍射法测定竹材纤维素结晶度[J]. 东北林业大学学报, 2010, 38(8): 75?7. doi:10.3969/j.issn.1000-5382.2010.08.023

    Yang S M, Jiang Z H, Ren H Q, et al. Determination of cellulose crystallinity of bamboo culms with X-ray diffraction spectrum[J]. Journal of Northeastern Forestry University, 2010, 38(8): 75?7. doi:10.3969/j.issn.1000-5382.2010.08.023 [27]Wahab R, Mustafa M T, Sulaiman O, et al. Anatomical and physical properties of cultivated two- and four-year-old Bambusa vulgaris[J]. Sains Malaysiana, 2010, 39(4): 571?79. [28]Wahab R, Mohamed A, Mustafa M T, et al. Physical characteristics and anatomical properties of cultivated bamboo ( Bambusa vulgarisSchrad.) culms[J]. Journal of Biological Sciences, 2009, 9(7): 753?59. doi:10.3923/jbs.2009.753.759 [29]钟莎, 张双? 覃道? ? 毛竹含水率、基本密度和干缩性的变异规律[J]. 北京林业大学学报, 2009, 31(增刊1): 185?88.

    Zhong S, Zhang S B, Qin D C, et al. Variation patterns of moisture content, basic density and dry shrinkage of Phyllostachys pubescens[J]. Journal of Beijing Forestry University, 2009, 31(Suppl.1): 185?88. [30]严彦, 刘焕? 张秀? ? 毛竹材性差异对胶合竹层板应力分级的影响[J]. 安徽农业大学学报, 2017, 44(2): 260?64.

    Yan Y, Liu H R, Zhang X B, et al. The effect of Phyllostachy pubescensf. luteaWen property on the E-rated classification of laminated bamboo board[J]. Journal of Anhui Agricultural University, 2017, 44(2): 260?64. [31]谢九? 齐锦? 周亚? ? 慈竹材物理力学性质研究[J]. 竹子研究汇刊, 2011, 30(4): 30?4.

    Xie J L, Qi J Q, Zhou Y W, et al. A study on bamboo physico-mechanical properties of Neosinocalamus affinis[J]. Journal of Bamboo Research, 2011, 30(4): 30?4. [32]杨喜, 刘杏? 杨淑? ? 梁山慈竹材质生成过程中的物理力学性质研究[J]. 林业实用技? 2012(11): 94?6.

    Yang X, Liu X E, Yang S M, et al. Study on the physical and mechanical properties of the material generation process of Liang Shan Cixi bamboo[J]. Forest Science and Technology, 2012(11): 94?6. [33]刘一? 赵广? 木质资源材料学[M]. 北京: 中国林业出版? 2004.

    Liu Y X, Zhao G J. Wood resource materials[M]. Beijing: China Forestry Publishing House, 2004. [34]张宏? 杜凡, 张福? ? 云南4种材用丛生竹的主要物理力学性质[J]. 西南林业大学学报(自然科学), 1998, 18(3): 189?93.

    Zhang H J, Du F, Zhang F X, et al. Main physical and mechanical properties of four typical thick-growing bamboo in Yunnan[J]. Journal of Southwest Forestry (Natural Science), 1998, 18(3): 189?93. [35]杨云? 愈有? 方伟, ? 红壳竹竹材物理力学性质的研究[J]. 浙江农林大学学报, 1998, 15(2): 158?63.

    Yang Y F, Yu Y M, Fang W, et al. Study on the physico-mechanical properties of culm-wood of Phyllostachys iridenscens[J]. Journal of Zhejiang A&F University, 1998, 15(2): 158?63. [36]关明? 朱一? 张齐? 甜竹的干缩性及其纤维饱和点[J]. 南京林业大学学报(自然科学?, 2003, 27(1): 33?6.

    Guan M J, Zhu Y X, Zhang Q S. Research on shrinkage and fiber saturation point of Dendrocalamus hamiltonii[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2003, 27(1): 33?6. [37]崔敏, 殷亚? 姜笑? ? 不同竹龄毛竹材物理性质的差异分析[J]. 森林与环境学? 2010, 30(4): 338?43.

    Cui M, Yin Y F, Jiang X M, et al. Variation analysis of physical characteristics in Phyllostachy pubescensstem at different growth ages[J]. Journal of Forestry and Environment, 2010, 30(4): 338?43. [38]苏文? 顾小? 朱如? ? 大木竹竹材物理性质的研究[J]. 南京林业大学学报(自然科学?, 2007, 31(2): 42?6.

    Su W H, Gu X P, Zhu R Y, et al. Study on physical properties of Bambusa wenchouensiswood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2007, 31(2): 42?6. [39]张闻? 费本? 田根? ? 不同纬度毛竹物理力学性质的比较研究[J]. 北京林业大学学报, 2019, 41(4): 136?45.

    Zhang W B, Fei B H, Tian G L, et al. Comparative study on physical mechanic properties of Phyllostachys edulisin different latitudes[J]. Journal of Beijing Forestry University, 2019, 41(4): 136?45. [40]李光? 辜忠? 李军?? 毛竹竹材物理力学性能研究[J]. 湖北林业科技, 2014, 43(5): 44?9.

    Li G R, Gu Z C, Li J Z, et al. Study on physical and mechanical performance of Phyllostachy pubescens[J]. Hubei Forestry Science and Technology, 2014, 43(5): 44?9.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?2)/ ?5)
    计量
    • 文章访问?110
    • HTML全文浏览野43
    • PDF下载野35
    • 被引次数:0
    出版历程
    • 收稿日期:2022-08-29
    • 修回日期:2023-02-10
    • 网络出版日期:2023-02-13
    • 刊出日期:2023-03-25

    目录

      Baidu
      map