留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

古代与现代柏木的水分吸附热力学比较研穵/p>

李莞璏/a>,李京亇/a>,郭娟,杨弢,马尔?/a>

downloadPDF
李莞? 李京? 郭娟, 杨弢, 马尔? 古代与现代柏木的水分吸附热力学比较研究[J]. 北京林业大学学报, 2023, 45(4): 126-135. doi: 10.12171/j.1000-1522.20220355
引用本文: 李莞? 李京? 郭娟, 杨弢, 马尔? 古代与现代柏木的水分吸附热力学比较研究[J]. 北京林业大学学报, 2023, 45(4): 126-135.doi:10.12171/j.1000-1522.20220355
Li Wanlu, Li Jingyu, Guo Juan, Yang Tao, Ma Erni. A comparative study on moisture sorption thermodynamics of ancient and recent cypress[J]. Journal of Beijing Forestry University, 2023, 45(4): 126-135. doi: 10.12171/j.1000-1522.20220355
Citation: Li Wanlu, Li Jingyu, Guo Juan, Yang Tao, Ma Erni. A comparative study on moisture sorption thermodynamics of ancient and recent cypress[J].Journal of Beijing Forestry University, 2023, 45(4): 126-135.doi:10.12171/j.1000-1522.20220355
doi:10.12171/j.1000-1522.20220355
基金项目:北京林业大学“北京市大学生科学研究与创业行动计划”(S202110022102),国家自然科学基金项目?1971583(/div>
详细信息
    作者简今

    李莞璐。主要研究方向:木材物理。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:lwldemail@126.com">lwldemail@126.com 地址?00083 北京市海淀区清华东 35 号北京林业大学材料科学与技术学陡/p>

    责任作耄

    马尔妮,教授。主要研究方向:木材物理、木材保护与改性。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:maerni@bjfu.edu.cn">maerni@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S781.3;S791.41;[K854.3]

A comparative study on moisture sorption thermodynamics of ancient and recent cypress

  • 摘要: 目的探究考古木材与现代木材在水分吸附热力学方面的不同及原因,旨在提高出土饱水木质文物的尺寸稳定性,可以为出土饱水考古木材的保护研究提供理论依据、/sec> 方法以古代与现代柏木为研究对象,分别采用扫描电子显微镜和傅里叶红外光谱表征试材的微观形貌和化学基团;利用动态水分吸附分析分别测?5?0 ℃下的试材吸湿和解吸等温吸附曲线,并基于Hailwood-Horrobin水分吸着理论进行拟合,结合Clausius-Clapeyron公式分别计算试材的微分吸着?i>Q S、自由能变化Δ G及微分吸着熵Γi>S,分析考古试材与现代试材在吸附热力学量的差异、/sec> 结果与现代木材相比,考古木材的细胞壁腐朽明显,产生大量细胞壁孔洞,并有菌丝体的存在。考古木材纤维素、半纤维素降解严重,而木质素相对含量升高,且极性基团−OH、−COOH含量减少。在一定温度下,考古木材的平衡含水率大于现代木材,耋i>Q S、Γi>S值均低于现代木材,并在含水率5%处产生拐点,该拐点对应单分子层吸着水达到饱和;另一方面,考古木材和现代木材的Δ G值差异不大;考古木材在吸湿平衡态下 Q S、Γi>G?/i>Δ S值小于解吸平衡态的值、/sec> 结论考古木材在经历长时间腐蚀后,细胞壁结构产生腐朽;与现代木材相比,考古木材纤维素、半纤维素降解程度最大,考古木材对水分的吸着减少;考古木材的吸湿性大于现代木材,而热力学值偏低;考古木材存在热力学吸湿滞后现象、/sec>

  • ?nbsp; 1考古木材和现代木材的SEM国/p>

    Figure 1.SEM images of archaeological wood and recent wood

    ?nbsp; 2考古木材与现代木材的红外光谱国/p>

    Figure 2.FTIR spectra of archaeological wood and recent wood

    ?nbsp; 3考古木材与现代木材在1 550 ~ 1 800 cm?(a)? 200 ~ 1 550 cm?(b)?50 ~ 1 200 cm?(c)波数范围内的分峰拟合曲纾/p>

    Figure 3.Deconvolution of the “fingerprint region for archaeological wood and recent wood FTIR spectrum 1 550 1 800 cm?(a), 1 200 1 550 cm?(b), 850 ? 200 cm?(c)

    ?nbsp; 4考古木材与现代木材的等温吸附曲线

    Figure 4.Adsorption isotherms of archaeological wood and recent wood

    ?nbsp; 550 ℃下考古木材的吸湿和解吸等温吸附曲线

    Figure 5.Adsorption and desorption isotherms of archaeological wood at 50 ℂ/p>

    ?nbsp; 6考古木材与现代木材中水分的微分吸着热(QS)随含水率(MC)的变化曲线

    Figure 6.Variation curves of differential heat of sorption (QS) of moisture in archaeological wood and recent wood against moisture content (MC)

    ?nbsp; 7考古木材(a)与现代木材(b)中水分的自由能变化(Γi>G)随含水率的变化曲线

    Figure 7.Variation curves of free energy change (ΔG) of moisture in archaeological wood (a) and recent wood (b) against moisture content

    ?nbsp; 8考古木材与现代木材中水分的微分吸着熵(ΔS)随含水率的变化曲线

    Figure 8.Variation curves of differential entropy of sorption (ΔS) of moisture in archaeological wood and recent wood againstmoisture content

    ?nbsp; 950 ℃下考古木材吸湿与解吸过程中皃i>QS(a)、Γi>G(b)、Γi>S(c)随含水率的变化曲线

    Figure 9.Variation curves ofQS(a), ΔG(b), ΔS(c) in archaeological wood against moisture content during moisture adsorption and desorption at 50 ℂ/p>

  • [2]Walsh-Korb Z, Avérous L. Recent developments in the conservation of materials properties of historical wood[J]. Progress in Materials Science, 2019, 102: 167?21. doi:10.1016/j.pmatsci.2018.12.001 [3]Zoia L, Salanti A, Orlandi M. Chemical characterization of archaeological wood: softwood Vasa and hardwood Riksapplet case studies[J]. Journal of Cultural Heritage, 2015, 16(4): 428?37. doi:10.1016/j.culher.2014.09.015 [4]林国? 孟原? 王光? 浙江宁波渔山小白礁一号沉船遗址调查与试掘[J]. 中国国家博物馆馆? 2011, 33(11): 54?8.

    Lin G C, Meng Y Z, Wang G Y. Survey and exploratory excavation of the Xiaobaijiao 1 Wreck Site in Yushan[J]. Journal of National Museum of China, 2011, 33(11): 54?8. [5]张玄? 浅析饱水古木材低温低氧保藏技术—以“南海Ⅰ号”出土饱水木材标本为例[J]. 客家文博, 2020, 13(4): 17?1.

    Zhang X W. Analysis on the preservation technology of moisture-saturated ancient wood at low temperature and low oxygen: taking the moisture-saturated wood specimen unearthed from “Nanhai Ⅰ as an example[J]. Hakka Cultural Heritage Vision, 2020, 13(4): 17?1. [6]Crestini C, El Hadidi N M N, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin[J]. Microchemical Journal, 2009, 92(2): 150?54. doi:10.1016/j.microc.2009.03.003 [7]Łucejko J J, Modugno F, Ribechini E, et al. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques[J]. Analytica Chimica Acta, 2009, 654(1): 26?4. doi:10.1016/j.aca.2009.07.007 [8]卢芸. 木材超分子科? 科学意义及展望[J]. 木材科学与技? 2022, 36(2): 1?0. doi:10.12326/j.2096-9694.2022026

    Lu Y. Wood supramolecular science: scientific significance and prospects[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2): 1?0. doi:10.12326/j.2096-9694.2022026 [9]Majka J, Babiński L, Olek W. Sorption isotherms of waterlogged subfossil scots pine wood impregnated with a lactitol and trehalose mixture[J]. Holzforschung, 2017, 71(10): 813?19. doi:10.1515/hf-2017-0006 [10]Hailwood A J, Horrobin S. Absorption of water by polymers: analysis in terms of a simple model[J]. Transactions of the Faraday Society, 1946, 42: 84?2. doi:10.1039/tf946420b084 [11]Guo J, Yin Y F, Han L Y, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old[J]. International Association of Wood Anatomists Journal, 2019, 40(4): 1?5. [12]Thybring E E, Kymäläinen M, Rautkari L. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated[J]. Wood Science and Technology, 2018, 52(2): 297?29. doi:10.1007/s00226-017-0977-7 [13]曹金? 吸着·解吸过程中水分与木材之间的相互作用—从介电弛豫及吸附热力学[D]. 北京: 北京林业大学, 2001.

    Cao J Z. Interaction between water and wood during adsorption and desorption processes: from dielectric and thermodynamic approaches[D]. Beijing: Beijing Forestry University, 2001. [14]Simón C, Esteban L G, Palacios P, et al. Thermodynamic properties of the water sorption isotherms of wood of limba ( Terminalia superbaEngl. & Diels), obeche ( Triplochiton scleroxylonK. Schum.), radiata pine ( Pinus radiataD. Don) and chestnut ( Castanea sativaMill.)[J]. Industrial Crops and Products, 2016, 94(8): 122?31. [15]Perry N P, Audimar P B, Andy L. Thermodynamics of moisture sorption by the giant-timber bamboo[J]. Holzforschung, 1997, 51(2): 177?82. doi:10.1515/hfsg.1997.51.2.177 [16]韩刘? 小白礁Ⅰ号沉船饱水 脱水加固木材的结构与性能研究[D]. 北京: 中国林业科学研究? 2020.

    Han L Y. Structure and performance of both waterlogged and consolidated archaeological wood: a case of Xiaobaijiao No. 1 Shipwreck[D]. Beijing: Chinese Academy of Forestry, 2020. [17]Bari E, Nazarmezhad N, Kazemi S M, et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreanusand Trametes versicolorin beech wood[J]. International Biodeterioration & Biodegradation, 2015, 104(12): 231?37. [18]孙佳? 东营凹陷页岩可动油评价及留烃机理[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所? 2021.

    Sun J N. Evalution of movable oil and retention machanics of Dongying depression shales[D]. Guangzhou: University of Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, 2021. [19]Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J], International Biodeterioration & Biodegradation, 2003, 52(3): 151?60. [20]Oudiani A E, Msahli S, Sakli F. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy[J]. Carbohydrate Polymers, 2017, 164(5): 242?48. [21]Xia Y, Chen T Y, Wen J L, et al. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood[J]. International Journal of Biological Macromolecules, 2018, 109: 407?16. doi:10.1016/j.ijbiomac.2017.12.114 [22]袁诚, 翟胜? 章一? ? 红外光谱结合热重法对考古木材降解状况的分析[J]. 光谱学与光谱分析, 2020, 40(9): 2943?950.

    Yuan C, Zhai S C, Zhang Y M, et al. Simple evaluation of the degradation state of archaeological wood based on the infrared spectroscopy combined with thermogravimetry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2943?950. [23]袁诚, 陈冰? 黄曹? ? 徐州出土汉代棺木用材树种鉴定及其化学性质[J]. 林业工程学报, 2019, 4(3): 52?9.

    Yuan C, Chen B W, Huang C X, et al. Species identification and chemical analysis of coffin wood in the Han Dynasty excavated in Xuzhou[J]. Journal of Forestry Engineering, 2019, 4(3): 52?9. [24]Kadita S. Studies on the water sorption of wood[J]. Wood Research, 1960, 23: 1?1. [25]Simpson W. Sorption theories applied to wood[J]. Wood and Fiber Science, 1980, 12(3): 183?95. [26]García-Iruela A, García E L, García F F, et al. Effect of degradation on wood hygroscopicity: the case of a 400-year-old coffin[J]. Forests, 2020, 11(7): 712. doi:10.3390/f11070712 [27]Nilsson T, Rowell R. Historical wood-structure and properties[J]. Journal of Cultural Heritage, 2012, 13(3): S5−S9. doi:10.1016/j.culher.2012.03.016 [28]Urquhart A R. The mechanism of the adsorption of water by cotton[J]. Journal of the Textile Institute, 1929, 20: 125?32. doi:10.1080/19447022908661485 [29]郭娟, 杨弢, 殷亚? 考古木材的吸湿性能及其内在影响机制[M] 北京: 科学出版? 2020: 240-249.

    Guo J, Yang T, Yin Y F. The moisture adsorption properties and internal influence mechanism of archaeological wood[M]. Beijing: Science Press, 2020: 240?49.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?9)/ ?1)
    计量
    • 文章访问?71
    • HTML全文浏览野45
    • PDF下载野32
    • 被引次数:0
    出版历程
    • 收稿日期:2022-08-29
    • 修回日期:2023-03-27
    • 录用日期:2023-03-29
    • 网络出版日期:2023-04-01
    • 刊出日期:2023-04-25

    目录

      Baidu
      map