留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

几种林场总体森林蓄积量密度均值估计方法的比较评价

丁相兂/a>,陈尔?/a>,赵磊,刘清旹/a>,范亚雃/a>,赵俊鹎/a>,徐昆鹎/a>

downloadPDF
丁相? 陈尔? 赵磊, 刘清? 范亚? 赵俊? 徐昆? 几种林场总体森林蓄积量密度均值估计方法的比较评价[J]. 北京林业大学学报, 2023, 45(2): 11-23. doi: 10.12171/j.1000-1522.20220303
引用本文: 丁相? 陈尔? 赵磊, 刘清? 范亚? 赵俊? 徐昆? 几种林场总体森林蓄积量密度均值估计方法的比较评价[J]. 北京林业大学学报, 2023, 45(2): 11-23.doi:10.12171/j.1000-1522.20220303
Ding Xiangyuan, Chen Erxue, Zhao Lei, Liu Qingwang, Fan Yaxiong, Zhao Junpeng, Xu Kunpeng. Comparison and evaluation of several methods for estimating the average density of total forest volume in forest farm[J]. Journal of Beijing Forestry University, 2023, 45(2): 11-23. doi: 10.12171/j.1000-1522.20220303
Citation: Ding Xiangyuan, Chen Erxue, Zhao Lei, Liu Qingwang, Fan Yaxiong, Zhao Junpeng, Xu Kunpeng. Comparison and evaluation of several methods for estimating the average density of total forest volume in forest farm[J].Journal of Beijing Forestry University, 2023, 45(2): 11-23.doi:10.12171/j.1000-1522.20220303
doi:10.12171/j.1000-1522.20220303
基金项目:国家重点研发计划?021YFE0117700),高分共性产品真实性检验关键技术研究与标准规范编制?1-Y20B01-9001-19/22(/div>
详细信息
    作者简今

    丁相元,博士生。主要研究方向:遥感技术与应用。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:dxy4201@126.com">dxy4201@126.com 地址?00091北京市海淀区东小府1号中国林业科学研究院资源信息研究所

    责任作耄

    陈尔学,研究员,博士生导师。主要研究方向:雷达应用技术研究、遥感技术与应用。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:chenerx@ifrit.ac.cn">chenerx@ifrit.ac.cn 地址:同三/span>

  • 中图分类叶S758.4

Comparison and evaluation of several methods for estimating the average density of total forest volume in forest farm

  • 摘要: 目的以林场或县森林资源总体为调查对象,及时、准确地调查监测总体平均每公顷蓄积量,对上级(如市、省)部门开展森林资源宏观管理、生态保护价值评价、森林碳储量计量、领导干部任期绩效考核等工作都有重要支撑作用。将卫星、无人机等多源遥感数据作为辅助数据,采用较少抽样调查样地数据,实现总体参数有效估测的新方法,已成为国内外重要的研究方向,但目前,国内尚无多种现有估计方法的比较评价研究。为了促进新一代遥感技术在森林资源调查业务中的应用,提高我国森林资源天空地一体化调查监测技术水平,亟需对现有林场或县总体参数估测方法进行比较评价研究、/sec> 方法以内蒙古旺业甸实验林场主要人工林树种为总体,基?019年在林场获取的无人机激光雷达(LiDAR)抽样数据、Sentinel-2A多光谱数据(全覆盖)和少量样地数据,针对样地(p)、样地−卫星(ps)、样地−抽样无人机LiDAR(pl)以及样地−抽样无人机LiDAR-卫星(pls?种模式,利用适合?种模式的概率抽样法(DB)、模型辅助法(MA)、模型法(MD)和混合法(HY?类共5种估测方法(DB p、MD ps、MA ps、HY pl以及MD pls)对总体森林蓄积量密度均值(MSVD)进行估计与对比分析、/sec> 结果?)DB p、MD ps、MA ps、HY pl、MD pls5种方法估测的MSVD分别?12.54?02.09?02.38?10.07以及208.96 m 3/hm 2,精度分别为90.44%?1.54%?1.69%?6.35%?6.45%,方差依次减小。(2)其?种方法相对于MD pls方法的估计效率(RE)均大于1(RE DBp,MDpls= 5.39,RE MDps,MDpls= 3.82,RE MAps,MDpls= 3.69,RE HYpl,MDpls= 1.07);HY pl相对于MD pls的RE略大?,但几倍于其他3种方法(RE DBp,HYpl= 5.02,RE MAps,HYpl= 3.43,RE MDps,HYpl= 3.56)。(3)包含LiDAR数据的HY pl与MD pls方法相对于包含Sentinel-2A数据的MD ps与MA ps方法均为正效率(RE MAps,HYpl= 3.43,RE MDps,HYpl= 3.56,RE MDps,MDpls= 3.82,RE MAps,MDpls= 3.69);MD ps与MA ps方法之间的RE接近1,但MA ps的效率微高于MD ps(RE MDps,MAps= 1.04)、/sec> 结论和只利用样地数据的估计方法相比,将遥感数据作为辅助变量建立估测模型,无论是采用对蓄积量不够敏感的林场全覆盖Sentinel-2A多光谱遥感数据,还是采用对蓄积量很敏感的抽样式获取的LiDAR数据,都可有效提高林场总体MSVD的估测精度。涉及遥感数据应用的4种方法,估计精度最高的为MD pls,其次为HY pl,这2种方法都包含了LiDAR遥感抽样观测数据的应用,都是适应于林场总体MSVD估计的年度监测方法。可实现天空?种观测数据协同应用的MD pls估测精度和相对效率最高,可作为林场森林蓄积量年度监测的首选方法、/sec>

  • ?nbsp; 1研究区位置和覆盖范围

    Figure 1.Location and coverage of the study area

    ?nbsp; 2无人机和样地数据抽样获取方案示意国/p>

    Figure 2.Schematic diagram of UAV and sample plot data sampling acquisition scheme

    ?nbsp; 3各估测方法所利用数据示意国/p>

    Figure 3.Schematic diagram of the data used by each estimation method

    ?nbsp; 4遥感特征选择

    折线代表值的变化趋势。The broken line represents the trend of value.

    Figure 4.Feature selection of remote sensing

    ?nbsp; 5遥感特征建模估测模型精度

    实线??验证线。图中RMSE和ME的单位均为m3/hm2。The solid line is 1? verification line.The unit of RMSE and ME in the figure is m3/ha.

    Figure 5.Remote sensing feature modeling to estimate model accuracy

    ?nbsp; 6各方法之间的相对效率

    Figure 6.Relative efficiency (RE) between methods

    ?nbsp; 1S-2A卫星数据特征

    Table 1.S-2A satellite data characteristics

    特征名称
    Feature name
    特征符号
    Feature symbol
    计算公式
    Calculation formula
    特征名称
    Feature name
    特征符号
    Feature symbol
    计算公式
    Calculation formula
    光谱特征
    Spectral feature
    B2?i>B3?i>B4?i>B5?i>B6?i>B7?i>B8a?i>B11?i>B12 角二阶矩
    Angular second moment
    AN $\displaystyle \sum \limits_{i,j = 1}^k {P_{i,j}^2}$
    差值植被指?br/>Difference vegetation index DVI ${B_8} - {B_4}$ 熴br/>Entropy EN $\displaystyle \sum \limits_{i,j = 1}^k {P_{i,j}}\left( { - \ln {P_{i,j}}} \right)$
    增强植被指数
    Enhanced vegetation index
    EVI 2.5 × (B8B4)/(B8+ 6 ×B4 7.5 ×B2+ 1) 对比?br/>Contrast CON $\displaystyle \sum \limits_{i,j = 1}^k {\left( {i - j} \right)^2} \times {P_{i,j}}$
    归一化植被指?br/>Normalized difference vegetation index NDVI $({B_8} - {B_4})/({B_8} + {B_4})$ 均倻br/>Mean ME $\dfrac{1}{{{k^2}}}\displaystyle \sum \limits_{i,j = 1}^k {P_{i,j}}$
    比值植被指?br/>Ratio vegetation index SR ${B_8}/{B_4}$ 方差
    Variance
    VAR $\displaystyle \sum \limits_{i,j = 1}^k {P_{i,j} }\left( {i,j - {\rm{ME}}} \right)$
    转换归一化植被指?br/>Transformed normalized difference vegetation index TNDVI $\sqrt {({B_8} - {B_4})/({B_8} + {B_4}) + 0.5}$ 同质?br/>Homogeneity HOM $\displaystyle \sum \limits_{i,j = 1}^k \dfrac{ { {P_{i,j} } } }{ {1 + { {\left( {i - j} \right)}^2} } }$
    叶绿素指?br/>Chlorophyll index CIg ${B_8}/{B_3} - 1$ 相关?br/> Correlation COR $\displaystyle\sum\limits_{i,j = 1}^k {P_{i,j}^2} \left[ {\frac{{\left( {i - {u_i}} \right) - \left( {j - {u_j}} \right)}}{{\sqrt {\sigma _i^2\sigma _j^2} }}} \right]$
    反向红边叶绿素指?br/>Inverted red edge chlorophyll index IRECI $({B_7} - {B_4})/({B_5}/{B_6})$ 相异?br/>Dissimilarity DIS $\displaystyle\sum\limits_{i,j = 1}^k {{P_{i,j}}} |i - j|$
    色素简单比值指?br/>Pigment specific simple ratio PSSRA ${B_7}/{B_4}$ 修正叶绿素吸收反射指?br/>Modified chlorophyll absorption in reflectance index MCARI [(B5B4) 0.2 × (B5B3)] × (B5/B4)
    S-2A 红边位置指数
    S-2A red edge position
    S2REP 705 + 35 × [(B4+B7)/2 B5]/(B6B5) 修正窄边红边简单比值指?br/>Modified simple ratio red edge narrow MSRren $[({B_{8{\text{a}}}}/{B_5}) - 1]/\sqrt {({B_{8{\text{a}}}}/{B_5}) + 1} $
    红边叶绿素指?br/>Red edge chlorophyll index CIgre1 $ {{B}}_{{5}}{/}{{B}}_{{3}}{-1} $ 红边植被指数
    Red edge vegetation index
    NDVIre1 $ {(}{{B}}_{{8}}{-}{{B}}_{{5}}{)/(}{{B}}_{{8}}{ + }{{B}}_{{5}}{)} $
    CIgre2 ${B_5}/{B_3} - 1$ NDVIre2 $ {(}{{B}}_{{8}}{-}{{B}}_{{6}}{)/(}{{B}}_{{8}}{ + }{{B}}_{{6}}{)} $
    CIgre3 $ {{B}}_{{7}}{/}{{B}}_{{3}}{-1} $ NDVIre3 $ {(}{{B}}_{{8}}{-}{{B}}_{{7}}{)/(}{{B}}_{{8}}{ + }{{B}}_{{7}}{)} $
    注:$ {{B}}_{{2}} $? {{B}}_{{3}} $? {{B}}_{{4}} $? {{B}}_{{5}} $? {{B}}_{{6}} $? {{B}}_{{7}} $?i>B8?{ {B} }_{ {8{\rm{a}}} }$? {{B}}_{{11}} $? {{B}}_{{12}} $代表S-2A数据对应的波段,${ {P} }_{ {i,j} }{=}{ {D} }_{ {i,j} }{/}\displaystyle{ \sum} _{ {i,j}{=1} }^{ {k} }{ {D} }_{ {i,j} }$? {{D}}_{{i,j}} $丹i>i衋i>j列对应的像元值,k代表计算纹理时窗口大小。Notes: $ {{B}}_{{2}} $, $ {{B}}_{{3}} $, $ {{B}}_{{4}} $, $ {{B}}_{{5}} $, $ {{B}}_{{6}} $, $ {{B}}_{{7}} $,B8, ${ {B} }_{ {8{\rm{a}}} }$, $ {{B}}_{{11}} $ and $ {{B}}_{{12}} $ represent the bands corresponding to S-2A data; ${ {P} }_{ {i,j} }{=}{ {D} }_{ {i,j} }{/}\displaystyle {\sum} _{ {i,j}{=1} }^{ {k} }{ {D} }_{ {i,j} }$, $ {{D}}_{{i,j}} $ is the pixel value corresponding to theirow andjcolumn,krepresents the window size when calculating the texture.

    ?nbsp; 2LiDAR数据特征

    Table 2.Feature of LiDAR data

    特征名称
    Feature name
    特征符号
    Feature symbol
    均倻br/> Mean Hmean,Imean
    方差和标准差
    Variance and standard deviation
    Hvar,Ivar,Hsd,Isd
    最大值和最小倻br/> Maximum value and minimum value Hmax,Imax,Hmin,Imin
    变异系数
    Coefficient of variation
    Hcv,Icv
    四分距差
    Interquartile distance
    Hiq,Iiq
    偏斜?br/> Skewness Hsk,Isk
    百分位数
    Percentile
    Hp05,Hp10,Hp20,Hp25, ···,Hp95,Hp99
    Ip05,Ip10,Ip20,Ip25,···,Ip95,Ip99
    最小高度以上返回点
    Count of return point above the minimum height
    R1H, R2H,···, R8H, R9H
    注:H代表高度+i>I代表强度,var代表方差,sd代表标准差,max与min分别代表最大值与最小值,cv、iq以及sk分别代表变异系数、四分距差以及偏斜度+i>p05–i>p99代表对应的百分位数。Notes:Hrepresents height,Irepresents intensity, var represents variance, sd represents standard deviation, max and min represent maximum value and minimum value, respectively; cv, iq and sk represent coefficient of variation, interquartile distance and skewness, respectively;p05∑i>p99 represent the corresponding percentiles.
    下载: 导出CSV

    ?nbsp; 3材积计算公式

    Table 3.Formula for volume calculation

    树种 Tree species 材积计算公式 Formula for volume calculation
    白桦
    Betula platyphylla
    $ {V}{=}{{10}}^{{0.000}\;{397}\;{507}\;{075}\;{980}\;{248 \;\times\; }{{d}}^{{2}}{ \;\times\; }{h}{ \;+\; 3.812}\;{138}\;{080}\;{735}\;{6 \;\times\; }{{10}}^{-{6}}{ \;\times\; }{{d}}^{{3}}{ \;\times\; }{h}\;-\;{0.000}\;{843}\;{446}\;{660}\;{194}\;{932 \;\times\; }{{d}}^{{2}}\;-\;{0.000}\;{290}\;{088}\;{083}\;{727}\;{618 \;\times\; }{{d}}^{{2}}{ \;\times\; }{h}{ \;\times\; }{\lg}\;{d}} $
    黑桦
    Betula davurica
    $ {V}{=0.019}\;{921}\;{519}\;{389}\;{050}\;{9 \;+\; 0.000}\;{388}\;{145}\;{167}\;{080}\;{27 \;\times\; }{{d}}^{{2}}\;-\;{2.050}\;{596}\;{607}\;{769}\;{77 \;\times\; }{{10}}^{-{5}}{ \;\times\; }{{d}}^{{2}}{ \;\times\; }{h} -$
    $ {0.000}\;{870}\;{310}\;{875}\;{746}\;{131 \;\times\; }{{h}}^{{2}}{ \;+\; 8.053}\;{621}\;{369}\;{495}\;{43 \;\times\; }{{10}}^{-{5}}{ \;\times\; }{d}{ \;\times\; }{{h}}^{{2}} $
    落叶杽br/>Larix gmelinii $ {V}{=}{{10}}^{-{3.498}\;{903}\;{907}\;{280}\;{04 \;+\; 2.755}\;{048}\;{465}\;{025}\;{64 \;\times\; }{\lg}\;{d}\;-\;{0.394}\;{050}\;{839}\;{410}\;{844 \;\times\; }{\lg}\;{{d}}^{{2}}\;-\;{1.379}\;{153}\;{564}\;{042}\;{94 \;\times\; }{\lg}\;{h}{ \;+\; 1.145}\;{866}\;{814}\;{777}\;{51 \;\times\; }{\lg}\;{{h}}^{{2}}} $
    樟子杽br/>Pinus sylvestris $ {V}{=0.000}\;{445}\;{504}\;{541}\;{007}\;{861 \;\times\; }{{d}}^{{1.663}\;{165}\;{237}\;{864}\;{29 \;\times\; \exp(0.098}\;{992}\;{935}\;{700}\;{498}\;{1 \;\times\; }{h}\;-\;{1.666}\;{816}\;{460}\;{562}\;{17/}{h}{)}} $
    油松
    Pinus tabuliformis
    ${V}{=2.533}\;{092}\;{907}\;{631}\;{68 \;\times\; }{ {10} }^{ {-5} }{ \;\times\; }{ {d} }^{ {2} }{ \;\times\; }{h}\;-\;{8.573}\;{788}\;{411}\;{603}\;{25 \;\times\; }{ {10} }^{ {-7} }{ \;\times\; }{ {d} }^{ {3} }{ \;\times\; }{h}\;-\;{6.000}\;{334}\;{292}\;{010}\;{54 \;\times\; }{ {10} }^{ {-5} }{ \;\times\; }{ {d} }^{ {2} } \;+\;$
    ${ 2.937}\;{206}\;{772}\;{188}\;{84 \;\times\; }{ {10} }^{ {-5} }{ \;\times\; }{ {d} }^{ {2} }{ \;\times\; }{h}{ \;\times\; }{ {\lg} }\; {d}$
    注:引自文献[40]、i>V代表单木材积:i>d代表单木胸径:i>h代表单木树高。Notes: cited from reference [40].Vrepresents single tree stock volume,drepresents single tree DBH,hrepresents single tree height.
    下载: 导出CSV

    ?nbsp; 4遥感特征优选后保留的特?/p>

    Table 4.Remotes sensing features selected after optimum feature selection

    数据溏br/> Data source 特征选择结果
    Result of feature selection
    S-2A B2,MCARI+i>B2ME+i>B12COR
    LiDAR Hmean+i>Ip99,R2H
    下载: 导出CSV

    ?nbsp; 55种方法的总体均值估计结果和精度

    Table 5.Results and accuracy of total mean estimation of the five methods

    方法
    Method
    总体均?(m3·hm?(br/>Total mean/(m3·ha?) 均值方?(m3·hm?(br/>Mean variance/(m3·ha?) 标准?(m3·hm?(br/>Standard error/(m3·ha?) 估测精度
    Estimation accuracy
    DBp 212.54 107.51 10.37 90.44%
    MDps 202.09 76.18 8.72 91.54%
    MAps 202.38 73.55 8.58 91.69%
    HYpl 210.07 21.42 4.63 96.35%
    MDpls 208.96 19.95 4.47 96.45%
    下载: 导出CSV
  • [2]张晓? 游先? 应用?S”技术进行北京市森林立地分类和立地质量评价的研究[J]. 遥感学报, 1998, 2(4): 292?95. doi:10.11834/jrs.19980411

    Zhang X L, You X X. Application of 3S technology to forest site type classification and site quality evaluation in Beijing[J]. Journal of Remote Sensing, 1998, 2(4): 292?95. doi:10.11834/jrs.19980411 [3]黄国? 马炜, 王雪? ? 基于一类清查数据的福建省立地质量评价技术[J]. 北京林业大学学报, 2014, 36(3): 1?.

    Huang G S, Ma W, Wang X J, et al. Forestland site quality evaluation of Fujian Province based on continuous forest inventory data[J]. Journal of Beijing Forestry University, 2014, 36(3): 1?. [4]王雪? 张煜? 黄国? ? 全国森林面积和森林蓄积年度出数方法探讨[J]. 江西农业大学学报, 2016, 38(1): 9?8.

    Wang X J, Zhang Y X, Huang G S, et al. Discussion on methods for annual national producing estimates of forest area and forest stock in China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(1): 9?8. [5]聂祥? 姚顺? 张敏, ? 国家森林资源连续清查数据处理统计规范(LY/T 1957?011)[S]. 北京: 中国标准出版? 2011.

    Nie X Y , Yao S B, Zhang M, et al. Specification for data processing and statistic in national forest inventory(LY/T 1957?2011)[S]. Beijing: China Standard Press, 2011. [6]唐小? 翁国? 陈雪? ? 森林资源规划设计调查技术规?GB/T26424?010)[S]. 北京: 中国标准出版? 2010.

    Tang X P, Weng G Q, Chen X F, et al. Technical regulations for inventory for forest management planning and design (GB/T26424?010)[S]. Beijing: China Standard Press, 2010. [7]Saarela S, Holm S, Grafström A, et al. Hierarchical model-based inference for forest inventory using three sources of information[J]. Annals of Forest Science, 2016, 73: 895?10. doi:10.1007/s13595-016-0590-1 [8]Ståhl G, Saarela S, Schnell S, et al. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation[J]. Forest Ecosystems, 2016, 3: 1?1. doi:10.1186/s40663-016-0060-0 [9]Ene L T, Næsset E, Gobakken T, et al. Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach[J]. Remote Sensing of Environment, 2012, 123: 579?92. doi:10.1016/j.rse.2012.04.017 [10]Graubard B I, Korn E L. Inference for superpopulation parameters using sample surveys[J]. Statistical Science, 2002, 17(1): 73?6. [11]Ståhl G, Holm S, Gregoire T G, et al. Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway[J]. Canadian Journal of Forest Research, 2011, 41(1): 96?07. doi:10.1139/X10-161 [12]Corona P, Fattorini L, Franceschi S, et al. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives[J]. Canadian Journal of Forest Research, 2014, 44(11): 1303?311. doi:10.1139/cjfr-2014-0203 [13]McRoberts R E, Westfall J A. The effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. Forest Science, 2014, 60: 34?3. doi:10.5849/forsci.12-141 [14]Puliti S, Ene L T, Gobakken T, et al. Use of partial coverage UAV data in sampling for large scale forest inventories[J]. Remote Sensing of Environment, 2017, 194: 115?26. doi:10.1016/j.rse.2017.03.019 [15]Puliti S, Saarela S, Gobakken T, et al. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference[J]. Remote Sensing of Environment, 2018, 204: 485?97. doi:10.1016/j.rse.2017.10.007 [16]Condés S, McRoberts R E. Updating national forest inventory estimates of growing stock volume using hybrid inference[J]. Forest Ecology and Management, 2017, 400: 48?7. doi:10.1016/j.foreco.2017.04.046 [17]Saarela S, Holm S, Healey S P, et al. Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data[J]. Remote Sensing, 2018, 10: 1832. doi:10.3390/rs10111832 [18]Saarela S, Wästlund A, Holmström E, et al. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors[J]. Forest Ecosystems, 2020, 7(1): 1?7. doi:10.1186/s40663-019-0212-0 [19]Richard W Guldin. A systematic review of small domain estimation research in forestry during the twenty-first century from outside the United States[J/OL]. Frontiers in Forests and Global Change, 2021, 4: 695929[2022?1?5]. https://doi.org/10.3389/ffgc.2021.695929. [20]肖兴? 中国森林资源清查[M]. 北京: 中国林业出版? 2005.

    Xiao X W. National forest inventory of China[M]. Beijing: China Forestry Publishing House, 2005. [21]曾伟? 骆期? 彭长? 两阶群团抽样在森林调查中的估计效率研究[J]. 林业科学研究, 1995, 8(5): 483?88. doi:10.13275/j.cnki.lykxyj.1995.05.003

    Zeng W S, Luo Q B, Peng C Q. Study on efficiency of two-stage cluster sampling in forest inventory[J]. Forest Research, 1995, 8(5): 483?88. doi:10.13275/j.cnki.lykxyj.1995.05.003 [22]李春? 陈琦, 谭必? 基于卫星遥感数据空中抽样的大尺度森林资源动态监测[J]. 林业资源管理, 2009, 2: 106?10,127. doi:10.3969/j.issn.1002-6622.2009.02.020

    Li C G, Chen Q, Tan B Z. Large-scale forest resources monitoring by means of spatial sampling of Hi-resolution remote sensing images[J]. Forest Resources Management, 2009, 2: 106?10,127. doi:10.3969/j.issn.1002-6622.2009.02.020 [23]郑冬? 智长? 黄国? ? 遥感大样地点面判读方法在森林资源宏观监测中的应用分析[J]. 林业资源管理, 2017, 6(6): 137?42.

    Zheng D M, Zhi C G, Huang G S, et al. Analysis of forest resources monitoring by zoning interpretation and point interpretation of remote sensing large plot[J]. Forest Resources Management, 2017, 6(6): 137?42. [24]唐守? 关于两相抽样面积蓄积统计的原则[J]. 林业资源管理, 1996, 4: 18?2.

    Tang S Z. The principles of two-phase sampling area accumulation statistics[J]. Forest Resources Management, 1996, 4: 18?2. [25]张宗秀, 高天? 张文. 双重二阶抽样提高森林资源抽样精度的研究[J]. 四川林业科技, 2013, 34(5): 8?2.

    Zhang Z X, Gao T L, Zhang W. Study on improving sampling accuracy of forest resources by double two-stage sampling[J]. Journal of Sichuan Forestry Science and Technology, 2013, 34(5): 8?2. [26]李增? 赵磊, 李堃, ? 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学?, 2020, 12(2): 150?58.

    Li Z Y, Zhao L, Li K, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020, 12(2): 150?58. [27]庞勇, 李增? 陈博? ? 星载激光雷达森林探测进展及趋势[J]. 上海航天, 2019, 36(3): 20?8.

    Pang Y, Li Z Y, Chen B W, et al. Status and development of spaceborne lidar applications in forestry[J]. Aerospace Shanghai, 2019, 36(3): 20?8. [28]黄华? 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12): 1?4.

    Huang H G. Progress and perspective of quantitative remote sensing of forestry[J]. Journal of Beijing Forestry University, 2019, 41(12): 1?4. [29]张王? 陈尔? 李增? ? 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983?97.

    Zhang W F, Chen E X, Li Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Aplication, 2017, 32(6): 983?97. [30]Zhao J P, Zhao L, Chen E X, et al. An improved generalized hierarchical estimation framework with geo statistics for mapping forest parameters and its uncertainty: a case study of forest canopy height[J/OL]. Remote Sensing, 2022, 14: 568[2022?0?22]. https://doi.org/10.3390/rs14030568. [31]宋新? 抽样调查技???[M]. 北京: 中国林业出版? 2007.

    Song X M. Sampling survey techniques[M]. Beijing: China Forestry Publishing House, 2007. [32]赵凯? 双重回归估计法测算森林生长量的探讨[J]. 林业资源管理, 1996, 5: 48?2.

    Zhao K F. Study on estimating forest growth by double regression estimation method[J]. Forest Resources Management, 1996, 5: 48?2. [33]鲁赛尼·阿特马维扎? 劳可? 用航空照片双重抽样进行森林资源清查[J]. 中南林业调查规划, 1982, 1: 53?5, 43.

    Lusaini A, Lao K Q. Double sampling using aerial photo for forest resource inventory[J]. Central South Forest Inventory and Planning, 1982, 1: 53?5, 43. [34]张秋? 袁亚? 丛修? 用遥感及实测回归估计森林蓄积量[J]. 东北林业大学学报, 1997, 25(2): 18?3.

    Zhang Q J, Yuan Y D, Cong X B. The method for estimating forest volume by remote sensing and regression of practical measurement[J]. Journal of Northeast Forestry University, 1997, 25(2): 18?3. [35]陈振? 熊智? 曾伟? ? 基于大样地双重抽样方法的广东省森林资源监测研究[J]. 中南林业调查规划, 2014, 33(3): 28?3. doi:10.3969/j.issn.1003-6075.2014.03.009

    Chen Z X, Xiong Z P, Zeng W S, et al. Forest resources monitoring based on double sampling with large plot in Guangdong[J]. Central South Forest Inventory and Planning, 2014, 33(3): 28?3. doi:10.3969/j.issn.1003-6075.2014.03.009 [36]陈中? 刘清? 李春? ? 基于无人机激光雷达的人工林碳储量线性与非线性估测模型比较[J]. 北京林业大学学报, 2021, 43(12): 9?6. doi:10.12171/j.1000-1522.20200417

    Chen Z C, Liu Q W, Li C G, et al. Comparison in linear and nonlinear estimation models of carbon storage of plantations based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2021, 43(12): 9?6. doi:10.12171/j.1000-1522.20200417 [37]Donoghue D N M, Watt P J, Cox N J, et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2007, 110(4): 509?22. doi:10.1016/j.rse.2007.02.032 [38]McGaughey R J. FUSION/LDV: Software for LiDAR data analysis and visualization, January 2021-FUSION Version 4.20[Z/OL]. Washington D C: United Stated of Department of Agriculture, 2021. http://forsys.cfr.washington.edu/software/fusion/FUSION_manual.pdf. [39]曹林, 徐婷, 申鑫, ? 集成Landsat OLI和机载LiDAR条带数据的亚热带森林生物量制图[J]. 遥感学报, 2016, 20(4): 665?78. doi:10.11834/jrs.20165091

    Cao L, Xu T, Shen X, et al. Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests[J]. Journal of Remote Sensing, 2016, 20(4): 665?78. doi:10.11834/jrs.20165091 [40]何诚. 森林精准计测关键技术研究[D]. 北京: 北京林业大学, 2013.

    He C. The key technology fore precision measurement in forest surveying[D]. Beijing: Beijing Forestry University, 2013. [41]Davidson R, MacKinnon J G. Estimation and Inference in Econometrics[M]. New York: Oxford University Press, 1993. [42]McConville K S, Moisen G G, Frescino T S. A tutorial on model-assisted estimation with application to forest inventory[J]. Forests, 2020, 11: 244. doi:10.3390/f11020244 [43]Ståhl G, Heikkinen J, Petersson H, et al. Sample-based estimation of greenhouse gas emissions from forests-a new approach to account for both sampling and model errors[J]. Forest Science, 2014, 60: 3?3. doi:10.5849/forsci.13-005 [44]Genuer R, Poggi J M, Tuleau-Malot C. VSURF: an R package for variable selection using random forests[J]. R Journal, 2015, 7(2): 19?3. doi:10.32614/RJ-2015-018 [45]Næsset E, Ørka H O, Solberg S, et al. Mapping and estimating forest area and aboveground biomass in Miombo woodlands in Tanzania using data from airborne laser scanning, tandem-X, Rapideye, and global forest maps: a comparison of estimated precision[J]. Remote Sensing of Environment, 2016, 175: 282?00. doi:10.1016/j.rse.2016.01.006 [46]Lu D, Chen Q, Wang G, et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012, 2012: 1?6. [47]Chen L, Wang Y Q, Ren C Y, et al. Assessment of multiwavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging[J]. Forest Ecology and Management, 2019, 447: 12?5. doi:10.1016/j.foreco.2019.05.057 [48]赵峰, 李增? 王韵? ? 机载激光雷?LiDAR)数据在森林资源调查中的应用综述[J]. 遥感信息, 2008, 1: 106?10, 53. doi:10.3969/j.issn.1000-3177.2008.01.021

    Zhao F, Li Z Y, Wang Y S, et al. The application of LiDAR data in forest[J]. Remote Sensing Information, 2008, 1: 106?10, 53. doi:10.3969/j.issn.1000-3177.2008.01.021 [49]韩婷? 激光雷达数据在森林垂直结构参数反演中的应用综述[J]. 北京测绘, 2020, 34(8): 1061?1065.

    Han T T. Summarization of the application of LiDAR data in forest vertical structure parameters inversion[J]. Beijing Surveying and Maping, 2020, 34(8): 1061?065. [50]赵俊? 赵磊, 陈尔? ? ZY3立体像对和机载LiDAR抽样数据协同估测森林平均高[J]. 林业科学, 2020, 57(9): 66?5.

    Zhao J P, Zhao L, Chen E X, et al. Synergy application of ZY3 stereo imaging pairs and airborne LiDAR sampling data for estimating mean height of forest[J]. Scientia Silvae Sinicae, 2020, 57(9): 66?5. [51]张煜? 闫宏? 黄国? ? 森林资源连续清查技术规?GB/T 38590?020)[S]. 北京: 中国标准出版? 2020.

    Zhang Y X, Yan H W, Huang G S, et al. Technical regulations for continuous forest inventory(GB/T 38590?020)[S]. Beijing: China Standard Press, 2020. [52]Chen Q, Mcroberts R E, Wang C W, et al. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference[J]. Remote Sensing of Environment, 2016, 184: 350?60. doi:10.1016/j.rse.2016.07.023
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?6)/ ?5)
    计量
    • 文章访问?225
    • HTML全文浏览野61
    • PDF下载野46
    • 被引次数:0
    出版历程
    • 收稿日期:2022-07-25
    • 修回日期:2022-10-31
    • 网络出版日期:2023-02-10
    • 刊出日期:2023-02-25

    目录

      Baidu
      map