留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

京津风沙源治理工程区土地利用/覆盖变化对生态系统水源涵养服务的影响

武海?/a>,赵媛媚/a>,杜林芲/a>,迟文?/a>,丁国栊/a>,高广磉/a>

downloadPDF
武海? 赵媛? 杜林? 迟文? 丁国? 高广? 京津风沙源治理工程区土地利用/覆盖变化对生态系统水源涵养服务的影响[J]. 北京林业大学学报, 2023, 45(4): 88-100. doi: 10.12171/j.1000-1522.20220245
引用本文: 武海? 赵媛? 杜林? 迟文? 丁国? 高广? 京津风沙源治理工程区土地利用/覆盖变化对生态系统水源涵养服务的影响[J]. 北京林业大学学报, 2023, 45(4): 88-100.doi:10.12171/j.1000-1522.20220245
Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. doi: 10.12171/j.1000-1522.20220245
Citation: Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J].Journal of Beijing Forestry University, 2023, 45(4): 88-100.doi:10.12171/j.1000-1522.20220245
doi:10.12171/j.1000-1522.20220245
基金项目:国家自然科学基金面上项目?1971130),中央高校基本科研业务费专项(PTYX202122、PTYX202123(/div>
详细信息
    作者简今

    武海岩。主要研究方向:沙化土地水源涵养服务模拟。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:wuhaiyan0163@163.com">wuhaiyan0163@163.com 地址?00083 北京市海淀区清华东?5叶/p>

    责任作耄

    赵媛媛,博士,副教授。主要研究方向:荒漠化防治等。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:yuanyuan0402@bjfu.edu.cn">yuanyuan0402@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S774

Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area

  • 摘要: 目的水源涵养服务是与人类关系最为密切的生态系统服务之一,也是评估区域生态环境效益的重要指标。本研究以水源涵养量为指标,探究京津风沙源治理工程实施的生态效益、/sec> 方法采用区域土地利用/覆盖和气象数据,量化?000?018年土地利?覆盖变化和同期水源涵养量动态,进而评估了土地利用/覆盖变化对水源涵养服务的影响、/sec> 结果?)京津风沙源治理工程区自西北向东南依次以草地、耕地、林地覆盖为主,水源涵养量自西北向东南递增;(2?000?018年,林地总体增加?4.22%,区域水源涵养量总体也呈现增加趋势,晋北山地丘陵区、燕山丘陵山地水源保护区、科尔沁沙地、鄂尔多斯高原和大兴安岭南部区等增幅相对较大;(3)区域生态系统水源涵养服务随不同时期、亚区分布和地类转换而存在差异,林地水源涵养服务量最高,且在各亚区均占主导地位;??000?010年,全区内草地向林地转移对水源涵养量增加的贡献最大,?9.32 × 10 8m 3,大面积草地转为林地使大兴安岭南部区水源涵养量增加最为显著,?6.11 × 10 8m 3;(5?010?018年,全区内仍是草地向林地转移对水源涵养量增加的贡献最大,?.87 × 10 8m 3,荒地开垦、造林、种草对涵养水源的贡献集中作用于鄂尔多斯高原南部区,增加?.31 × 10 8m 3,退耕还林和草地向林地转移对燕山丘陵山地水源保护区贡献最大,?.84 × 10 8m 3、/sec> 结论京津风沙源治理工程实施以来,退耕还林、荒地造林、草地治理等措施使研究区水源涵养服务有效提高,引起水源涵养量增加的土地利?覆盖转移类型主要为未利用土地向林、草地转移和草、耕地向林地转移,地类转移对水源涵养量增加贡献最大的区域主要为大兴安岭南部区、燕山丘陵山地水源保护区和晋北山地丘陵区等东南部区域。区域土地利?覆盖格局有待进一步优化,下一阶段的工程实施应当根据各区生态特点分区施策,因地制宜,对耕地水源涵养服务能力较弱区域实施退耕还林还草工程,对有必要保留的耕地改进水土保持耕作栽培措施,未利用土地面积较大区域根据水资源承载能力科学实施封沙育林育草或进行人工造林,并加强管护,使研究区高生态效益区持续稳步发展,低生态效益区重点治理,高效发展、/sec>

  • ?nbsp; 1京津风沙源治理工程区(Ⅱ期)

    1. 典型草原东区 2. 典型草原中区 3. 典型草原西区 4. 科尔沁沙地; 5. 大兴安岭南部区; 6. 浑善达克沙地 7. 农牧交错带区 8. 黄河灌溉区; 9. 燕山丘陵山地水源区; 10. 晋北山地丘陵区; 11. 鄂尔多斯高原?, typical grassland east region; 2, typical grassland central region; 3, typical grassland west region; 4, Horqin Sandy Land; 5, southern Greater Hinggan Mountains region; 6, Otindag Sandy Land; 7, farming-pastoral ecozone; 8, Yellow River irrigation area; 9, water conservation zone of Yanshan Mountains region; 10, mountainous and hilly area in northern Shanxi Province; 11, Ordos Plateau.

    Figure 1.Area of the Beijing-Tianjin Sandstorm Source Control Project Area (BTSSCPA) (?

    ?nbsp; 2京津风沙源治理工程区土地利用/覆盖

    Figure 2.Land use/cover in the BTSSCPA

    ?nbsp; 3京津风沙源治理工程区综合土地利用动态度

    Figure 3.Dynamic degree of comprehensive land use in the BTSSCPA

    ?nbsp; 42000?018年京津风沙源治理工程区土地利?覆盖类型转换

    Figure 4.Conversion of land use/cover types in the BTSSCPA from 2000 to 2018

    ?nbsp; 5京津风沙源治理工程区多年平均水源涵养野/p>

    Figure 5.Annual mean water retention of the BTSSCPA

    ?nbsp; 62000?015年京津风沙源治理工程区及各亚区年平均水源涵养量变化趋劾/p>

    Figure 6.Changing trend of annual average water retention in the BTSSCPA and sub-regions from 2000 to 2015

    ?nbsp; 7京津风沙源治理工程区及各亚区各土地利?覆盖类型水源涵养野/p>

    Figure 7.Water retention of various land use/cover types in the BTSSCPA and each sub-area

    ?nbsp; 82000?018年京津风沙源治理工程区各亚区土地利用/覆盖变化对水源涵养量的影哌/p>

    Figure 8.Effects of land use/cover changes on water retention in sub-regions of the BTSSCPA from 2000 to 2018

    ?nbsp; 22000?010年京津风沙源治理工程区土地利?覆盖转移矩阵

    Table 2.Land-use/cover transfer matrix of the BTSSCPA from 2000 to 2010 km 2

    指标 Index 耕地
    Cropland
    林地
    Woodland
    草地
    Grassland
    水域
    Waters
    建设用地
    Construction land
    未利用地
    Unused land
    总计
    Sum
    耕地 Cropland 110 560.23 3 122.67 6 374.15 526.62 4 221.28 379.05 125 184.00
    林地 Woodland 1 358.09 61 173.73 3 356.15 117.55 494.70 367.89 66 868.11
    草地 Grassland 9 515.18 10 649.42 373 132.46 508.14 2 007.71 10 654.32 406 467.23
    水域 Waters 885.48 157.34 599.22 8 678.85 193.34 1 070.55 11 584.78
    建设用地 Construction land 1 576.04 123.50 489.51 63.42 10 825.14 81.21 13 158.82
    未利用地 Unused land 1 522.02 321.11 9 226.68 467.16 313.81 73 291.93 85 142.71
    总计 Sum 125 417.04 75 547.77 393 178.17 10 361.74 18 055.98 85 844.95 708 405.65
    下载: 导出CSV

    ?nbsp; 32010?018年京津风沙源治理工程区土地利?覆盖转移矩阵

    Table 3.Land-use/cover transfer matrix of the BTSSCPA from 2010 to 2018 km 2

    指标 Index 2018 Year of 2018
    耕地
    Cropland
    林地
    Woodland
    草地
    Grassland
    水域
    Waters
    建设用地
    Construction land
    未利用地
    Unused land
    总计
    Sum
    2010
    Year of 2010
    耕地 Cropland 123 553.88 163.44 396.39 150.31 1 131.79 19.65 125 415.46
    林地 Woodland 61.50 75 095.03 87.98 28.83 267.78 6.80 75 547.92
    草地 Grassland 661.14 834.95 389 583.76 147.21 1 795.10 156.28 393 178.44
    水域 Waters 28.05 1.97 44.51 10 179.01 55.80 52.41 10 361.75
    建设用地
    Construction land
    23.40 18.48 20.20 7.98 17 985.22 0.78 18 056.06
    未利用土
    Unused land
    152.73 260.71 1 152.89 278.21 370.42 83 630.00 85 844.96
    总计 Sum 124 480.70 76 374.58 391 285.73 10 791.55 21 606.11 83 865.92 708 404.59
    下载: 导出CSV

    ?nbsp; 42000?015年京津风沙源治理工程区及各亚区年平均水源涵养量变匕/p>

    Table 4.Change of annual average water retention in the BTSSCPA and sub-regions from 2000 to 2015

    亚区
    Subregion
    2000?010 From 2000 to 2010 2010?015 From 2010 to 2015 2000?015 From 2000 to 2015
    区域平均水源
    涵养量变匕br/>Change of regional average water retention capacity/
    (104m3·km?)
    年均增幅
    Average annual growth rate/
    (104m3·km?)
    区域平均水源
    涵养量变匕br/>Change of regional average water retention capacity/
    (104m3·km?)
    年均增幅
    Average annual growth rate/
    (104m3·km?)
    区域平均水源
    涵养量变匕br/>Change of regional average water retention capacity/
    (104m3·km?)
    年均增幅
    Average annual growth rate/
    (104m3·km?)
    晋北山地丘陵匹br/>Mountainous and hilly area in northern Shanxi Province 4.29 0.58 1.51 0.66 5.80 0.58
    燕山丘陵山地水源保护匹br/>Water conservation zone of Yanshan hilly and mountainous area 5.92 0.59 2.01 0.68 7.92 0.52
    科尔沁沙 Horqin Sandy Land 4.02 0.07 2.85 0.58 6.87 0.27
    鄂尔多斯高原 Ordos Plateau 2.66 0.27 0.88 0.31 3.54 0.25
    大兴安岭南部匹br/>Southern Greater Hinggan Mountains region 3.80 0.11 3.04 0.72 6.84 0.24
    农牧交错?br/>Farming-pastoral ecozone 1.17 0.05 1.20 0.49 2.37 0.18
    浑善达克沙地
    Otindag Sandy Land
    ?.05 0.00 1.60 0.36 1.55 0.12
    黄河灌溉匹br/>Yellow River irrigation area 1.72 0.14 0.42 0.16 2.14 0.12
    典型草原东区
    Typical grassland east region
    1.42 0.01 0.95 0.20 2.38 0.10
    典型草原中区
    Typical grassland central region
    ?.13 0.01 1.07 0.13 0.94 0.07
    典型草原西区
    Typical grassland west region
    0.42 0.05 0.48 0.09 0.90 0.05
    京津风沙源治理工程区
    BTSSCPA
    2.14 0.17 1.37 0.38 3.51 0.22
    下载: 导出CSV

    ?nbsp; 52000?015年京津风沙源治理工程区各亚区年平均水源涵养量方差分析

    Table 5.Analysis of variance of annual average water retention in each sub-region of the BTSSCPA from 2000 to 2015

    亚区名称
    Name of subregion
    均?(104m3·km?·a?)
    Average/(104m3·km?·year?)
    方差
    Variance
    F P F0.05
    典型草原中区 Typical grassland central region 3.35 0.38 1 271.49 0.00 1.89
    典型草原西区 Typical grassland west region 3.63 0.20
    浑善达克沙地 Otindag Sandy Land 9.79 1.14
    典型草原东区 Typical grassland east region 10.28 1.20
    鄂尔多斯高原 Ordos Plateau 10.33 1.80
    黄河灌溉 Yellow River irrigation area 12.64 0.52
    农牧交错带区 Farming-pastoral ecozone 18.69 3.75
    科尔沁沙 Horqin Sandy Land 21.02 4.79
    大兴安岭南部 Southern Greater Hinggan Mountains region 33.90 4.96
    晋北山地丘陵 Mountainous and hilly area in northern Shanxi Province 34.87 10.83
    燕山丘陵山地水源保护
    Water conservation zone of Yanshan hilly and mountainous area
    57.71 8.20
    SNK分组 SNK grouping A B C D E F G
    P 0.67 0.69 1.00 1.00 1.00 0.14 1.00        
    下载: 导出CSV

    ?nbsp; 62000?018年京津风沙源治理工程区土地利?覆盖变化对水源涵养量的影哌/p>

    Table 6.Effects of land use/cover changes on water retention in the BTSSCPA from 2000 to 2018

    土地利用/覆盖变化
    Land use/cover change
    2000?010年水源涵养量变化
    Change of water retention from 2000 to 2010/(104m3)
    2010?018年水源涵养量变化
    Change of water retention from 2010 to 2018/(104m3)
    未利用土地—耕地
    From unused land to cropland
    35 846.14 3 597.10
    未利用土地—草?br/>From unused land to grassland 117 651.07 14 700.74
    未利用土地—林?br/>From unused land to woodland 18 967.36 15 399.64
    草地—林?br/>From grassland to woodland 493 247.98 38 672.28
    退耕还枖br/>From cropland to woodland 110 905.05 5 804.75
    下载: 导出CSV
  • [2]高尚? 张春? 邹学? ? 京津风沙源治理工程效益[M]. 第二? 北京: 科学出版? 2012.

    Gao S Y, Zhang C L, Zou X Y, et al. Benefits of Beijing-Tianjin sand source control engineering[M]. 2nd Ed. Beijing: Science Press, 2012. [3]Bryan B A, Gao L, Ye Y, et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018, 559: 193?04. doi:10.1038/s41586-018-0280-2 [4]林峰, 陈兴? 姚文? ? 基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析[J]. 地理学报, 2020, 75(5): 1065?078. doi:10.11821/dlxb202005013

    Lin F, Chen X W, Yao W Y, et al. Multi-time scale analysis of water conservation in a discontinuous forest watershed based on SWAT model[J]. Acta Geographica Sinica, 2020, 75(5): 1065?078. doi:10.11821/dlxb202005013 [5]迟文? 匡文? 贾静, ? 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965?74.

    Chi W F, Kuang W H, Jia J, et al. Study on dynamic remote sensing monitoring of LUCC and soilwind erosion intensity in the Beijing-Tianjin Sandstorm Source Control Project region[J]. Remote Sensing Technology and Application, 2018, 33(5): 965?74. [6]刘洛, 徐新? 段建? ? 京津风沙源治理工程区生态环境时空变化的遥感监测分析[J]. 地球信息科学学报, 2011, 13(6): 819?24.

    Liu L, Xu X L, Duan J N, et al. The spatial-temporal changes monitoring of ecological environment in source area of the sand and dust endangering Beijing-Tianjin by remote sensing[J]. Journal of Earth Information Science, 2011, 13(6): 819?24. [7]魏兴? 雷俐, 邹学? ? 京津风沙源浑善达克沙地治理区退耕还林地的植被变化[J]. 中国沙漠, 2013, 33(2): 604?12. doi:10.7522/j.issn.1000-694X.2013.00083

    Wei X H, Lei L, Zou X Y, et al. Research on the vegetation changing of artificial forests converted from farmland in Otindag Sandy Land sub-regions of Beijing-Tianjin Sandstorm-Control Area[J]. Journal of Desert Research, 2013, 33(2): 604?12. doi:10.7522/j.issn.1000-694X.2013.00083 [8]Yang X C, Xu B, Jin Y X, et al. Remote sensing monitoring of grassland vegetation growth in the Beijing-Tianjin Sandstorm Source Project Area from 2000 to 2010[J]. Ecological Indicators, 2015, 51: 244?51. doi:10.1016/j.ecolind.2014.04.044 [9]Zhang X F, Niu J M, Buyantuev A, et al. Understanding grassland degradation and restoration from the perspective of ecosystem services: A case study of the Xilin River Basin in Inner Mongolia, China[J/OL]. Sustainability, 2016, 8(7): 594[2022?04?12]. https://doi.org/10.3390/su8070594. [10]李庆? 张彪, 王爽, ? 京津风沙源治理工程区2000?015年植被覆盖状况的区域差异研究[J]. 地学前缘, 2018, 25(5): 298?04.

    Li Q X, Zhang B, Wang S, et al. Regional differences of vegetation cover in the Beijing-Tianjin Sandstorm Source Region from 2000 to 2015[J]. Earth Science Frontiers, 2018, 25(5): 298?04. [11]黄麟, 吴丹, 孙朝? 基于规划目标的京津风沙源治理区生态保护与修复效应[J]. 生态学? 2020, 40(6): 1923?932.

    Huang L, Wu D, Sun C Y. The ecological effects of ecosystem conservation and restoration in Beijing-Tianjin Sand Source Regions based on the planning objects[J]. Acta Ecologica Sinica, 2020, 40(6): 1923?932. [12]覃云? 信忠? 易扬, ? 京津风沙源治理工程区沙尘暴时空变化及其与植被恢复关系[J]. 农业工程学报, 2012, 28(24): 196?04, 361.

    Qin Y B, Xin Z B, Yi Y, et al. Spatiotemporal variation of sandstorm and its response to vegetation restoration in Beijing-Tianjin Sandstorm Source area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 196?04, 361. [13]Zhao Y Y, Xin Z B, Ding G D. Spatiotemporal variation in the occurrence of sand-dust events and its influencing factors in the Beijing-Tianjin Sand Source Region, China, 1982?013[J]. Regional Environmental Change, 2018, 18(8): 2433?444. doi:10.1007/s10113-018-1365-z [14]崔晓, 赵媛? 丁国? ? 京津风沙源治理工程区植被对沙尘天气的时空影响[J]. 农业工程学报, 2018, 34(12): 171?79, 310. doi:10.11975/j.issn.1002-6819.2018.12.020

    Cui X, Zhao Y Y, Ding G D, et al. Spatio-temporal pattern of impacts of vegetation on controlling sand-dust weather in Beijing-Tianjin Sandstorm Source Control Project[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 171?79, 310. doi:10.11975/j.issn.1002-6819.2018.12.020 [15]于宝? 吴文? 赵学? ? 内蒙古京津风沙源治理工程土壤风蚀控制效益研究[J]. 干旱区研? 2016, 33(6): 1278?286. doi:10.13866/j.azr.2016.06.19

    Yu B L, Wu W J, Zhao X J, et al. Benefits of soil wind erosion control of the Beijing-Tianjin Sand Source Control Project in Inner Mongolia[J]. Arid Zone Research, 2016, 33(6): 1278?286. doi:10.13866/j.azr.2016.06.19 [16]吴丹, 巩国? 邵全? ? 京津风沙源治理工程生态效应评估[J]. 干旱区资源与环境, 2016, 30(11): 117?23.

    Wu D, Gong G L, Shao Q Q, et al. Ecological effects assessment of Beijing and Tianjin Sandstorm Source Control Project[J]. Journal of Arid Land Resources and Environment, 2016, 30(11): 117?23. [17]Zhao Y Y, Chi W F, Kuang W H, et al. Ecological and environmental consequences of ecological projects in the Beijing-Tianjin Sand Source Region[J]. Ecological Indicators, 2020, 112(5): 106111. [18]张彪, 李庆? 王爽, ? 京津风沙源区防风固沙功能的时空变化及其区域差异[J]. 自然资源学报, 2019, 34(5): 1041?053. doi:10.31497/zrzyxb.20190511

    Zhang B, Li Q X, Wang S, et al. Spatial-temporal changes and regional differences of the sand fixing service in the Beijing-Tianjin Sandstorm Source Region[J]. Journal of Natural Resources, 2019, 34(5): 1041?053. doi:10.31497/zrzyxb.20190511 [19]Hao R F, Yu D Y, Liu Y P, et al. Impacts of changes in climate and landscape pattern on ecosystem services[J]. Science of the Total Environment, 2017, 579: 718?28. doi:10.1016/j.scitotenv.2016.11.036 [20]Xu J, Xiao Y, Xie G D. Analysis on the spatio-temporal patterns of water conservation services in Beijing[J]. Journal of Resources and Ecology, 2019, 10(4): 362. doi:10.5814/j.issn.1674-764x.2019.04.003 [21]吴波, 李晓? 刘文, ? 京津风沙源工程区沙漠化防治区划与治理对策研究[J]. 林业科学, 2006, 42(10): 65?0. doi:10.3321/j.issn:1001-7488.2006.10.012

    Wu B, Li X S, Liu W, et al. Desertification control regionalization and rehabilitation countermeasures of source area of the sand and dust endangering Beijing-Tianjin[J]. Scientia Silvae Sinicae, 2006, 42(10): 65?0. doi:10.3321/j.issn:1001-7488.2006.10.012 [22]刘纪? 宁佳, 匡文? ? 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5): 789?02. doi:10.11821/dlxb201805001

    Liu J Y, Ning J, Kuang W H, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010?015[J]. Acta Geographica Sinica, 2018, 73(5): 789?02. doi:10.11821/dlxb201805001 [23]王秀? 包玉? 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1): 83?9.

    Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1): 83?9. [24]朱会? 李秀? 关于区域土地利用变化指数模型方法的讨论[J]. 地理学报, 2003, 58(5): 643?50. doi:10.3321/j.issn:0375-5444.2003.05.001

    Zhu H Y, Li X B. Discussion on the index method of regional land use change[J]. Acta Geographica Sinica, 2003, 58(5): 643?50. doi:10.3321/j.issn:0375-5444.2003.05.001 [25]刘志? 城市暴雨径流变化成因分析及有关问题探讨[J]. 水文, 2009, 29(3): 55?8. doi:10.3969/j.issn.1000-0852.2009.03.013

    Liu Z Y. Analysis of characteristics and cause of urban storm runoff change and discussion on some issues[J]. Journal of China Hydrology, 2009, 29(3): 55?8. doi:10.3969/j.issn.1000-0852.2009.03.013 [26]Zhang B, Xie G, Zhang C, et al. The economic benefits of rainwater-runoff reduction by urban green spaces: a case study in Beijing, China[J]. Journal of Environmental Management, 2012, 100: 65?1. [27]Zhang D, Huang Q X, He C Y, et al. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: a scenario analysis based on the shared socioeconomic pathways. Resources[J]. Conservation & Recycling, 2017, 125: 115?30. [28]Yang G F, Ge Y, Xue H, et al. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes[J]. Landscape and Urban Planning, 2015, 136: 110?21. doi:10.1016/j.landurbplan.2014.12.006 [29]龚诗? 肖洋, 郑华, ? 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学? 2017, 37(7): 2455?462.

    Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7): 2455?462. [30]王冶, 薛忠? 王琳, ? 承德市武烈河流域水源涵养功能的时空特征[J]. 草业科学, 2021, 38(6): 1047?059. doi:10.11829/j.issn.1001-0629.2021-0059

    Wang Y, Xue Z C, Wang L, et al. Analysis of the spatio-temporal characteristics of the water retention function of the Wulie River Basin in Chengde City[J]. Pratacultural Science, 2021, 38(6): 1047?059. doi:10.11829/j.issn.1001-0629.2021-0059 [31]王盛, 李亚? 李庆, ? 变化环境影响下张承地区水源涵养和土壤保持服务及其权衡与协同关系研究[J]. 生态学? 2022, 42(13): 1?3.

    Wang S, Li Y W, Li Q, et al. Water and soil conservation and their trade-off and synergistic relationship under changing environment in Zhangjiakou-Chengde area[J]. Acta Ecologica Sinica, 2022, 42(13): 1?3. [32]徐冉, 张圣? 朱仲? ? 放牧对典型草原区土壤水分及其对降雨响应规律的影响[J]. 中国草地学报, 2019, 41(3): 59?6.

    Xu R, Zhang S W, Zhu Z Y, et al. Effects of grazing on soil moisture and its response to rainfall in arid and semi-arid typical grassland[J]. Chinese Journal of Grassland, 2019, 41(3): 59?6. [33]刘洪? 张卫? 王堃, ? 华北农牧交错带农田−草地界面土壤水分影响域分析[J]. 应用生态学? 2009, 20(3): 659?64.

    Liu H L, Zhang W H, Wang K, et al. Edge influence of soil moisture at farmland-grassland boundary in agriculture-pasturage ccotone of northern China[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 659?64. [34]康相? 吴绍? 尹云? ? 华北农牧交错带土地沙漠化成因与土地利用调整对策[J]. 农业工程学报, 2005, 21(8): 45?1. doi:10.3321/j.issn:1002-6819.2005.08.010

    Kang X W, Wu S H, Yin Y H, et al. Formation mechanism of land desertification and adjustment of land use in ecotone between agriculture and animal husbandry in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(8): 45?1. doi:10.3321/j.issn:1002-6819.2005.08.010 [35]邓坤? 石培? 谢高? 长江上游森林生态系统水源涵养量与价值的研究[J]. 资源科学, 2002, 24(6): 68?3. doi:10.3321/j.issn:1007-7588.2002.06.012

    Deng K M, Shi P L, Xie G D. Water conservation of forest ecosystem in the upper reaches of Yangtze River and its benefits[J]. Resources Science, 2002, 24(6): 68?3. doi:10.3321/j.issn:1007-7588.2002.06.012 [36]张文? 胡远? 张晶, ? 岷江上游地区?0年森林生态系统水源涵养量与价值变化[J]. 生态学杂志, 2007, 26(7): 1063?067. doi:10.3321/j.issn:1000-4890.2007.07.018

    Zhang W G, Hu Y M, Zhang J, et al. Forestwater conservation and its benefits in upper reaches of Minjiang River in recent 30 years[J]. Chinese Journal of Ecology, 2007, 26(7): 1063?067. doi:10.3321/j.issn:1000-4890.2007.07.018 [37]杨媛? 李鉴? 欧阳勋志, ? 上犹县长防林不同森林植被类型土壤蓄水能力初探[J]. 土壤通报, 2012, 43(1): 10?4.

    Yang Y Y, Li J B, Ouyang X Z, et al. Water capacities of soil in different vegetation types in Shangyou Protection Forest of Jiangxi Province[J]. Chinese Journal of Soil Science, 2012, 43(1): 10?4. [38]张佳? 张建? 张海? ? 晋西黄土区典型林分水源涵养服务能力评价[J]. 北京林业大学学报, 2019, 41(8): 105?14.

    Zhang J N, Zhang J J, Zhang H B, et al. Water conservation capacity of typical forestlands in the Loess Plateau of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105?14. [39]王先? 贺康? 董喆, ? 北川河流域典型林型水源涵养服务能力评价[J]. 中国水土保持科学, 2017, 15(5): 94?02.

    Wang X B, He K N, Dong Z, et al. Evaluation on water conservation capacity of typical foresttypes in Beichuan River Basin[J]. Science of Soil and Water Conservation, 2017, 15(5): 94?02. [40]唐玉? 邵全? 乌江上游地区森林生态系统水源涵养功能评估及其空间差异探究[J]. 地球信息科学学报, 2016, 18(7): 987?99.

    Tang Y Z, Shao Q Q. Water conservation capacity of forest ecosystem and its spatial variation in the upper reaches of Wujiang River[J]. Journal of Geo-information Science, 2016, 18(7): 987?99. [41]曾莉, 李晶, 李婷, ? 基于贝叶斯网络的水源涵养服务空间格局优化[J]. 地理学报, 2018, 73(9): 1809?822. doi:10.11821/dlxb201809015

    Zeng L, Li J, Li T, et al. Optimizing spatial patterns of water conservation ecosystem service based on Bayesian belief networks[J]. Acta Geographica Sinica, 2018, 73(9): 1809?822. doi:10.11821/dlxb201809015 [42]沈钰? 肖燚, 欧阳志云, ? 基于生态系统质量的水源涵养服务评估−以西南五省为例[J]. 山地学报, 2020, 38(6): 816?28.

    Shen Y Q, Xiao Y, Ouyang Z Y, et al. Water conservation service evaluation based on ecosystem quality in southwestern China[J]. Mountain Research, 2020, 38(6): 816?28. [43]雷燕? 丁国? 李梓? ? 京津风沙源治理工程区土地利用/覆盖变化及生态系统服务价值响应[J]. 中国沙漠, 2021, 41(6): 29?0.

    Lei Y H, Ding G D, Li Z M, et al. Land use/cover change and its ecosystem service value response in the Beijing-Tianjin Sandstorm Source Control Project area[J]. Journal of Desert Research, 2021, 41(6): 29?0. [44]王耀, 张昌? 刘春? ? 三北防护林体系建设工程区森林水源涵养格局变化研究[J]. 生态学? 2019, 39(16): 5847?856.

    Wang Y, Zhang C S, Liu C L, et al. Research on the pattern and change of forest water conservation in Three-North Shelterbelt Forest Program region, China[J]. Acta Ecologica Sinica, 2019, 39(16): 5847?856. [45]巩飞, 罗勇, 田犀, ? 张家口坝上地区水源涵养功能的重要性评估[J]. 草业科学, 2020, 37(7): 1337?344. doi:10.11829/j.issn.1001-0629.2020-0094

    Gong F, Luo Y, Tian X, et al. Evaluating the importance of water conservation function in Bashang Area, Zhangjiakou[J]. Pratacultural Science, 2020, 37(7): 1337?344. doi:10.11829/j.issn.1001-0629.2020-0094
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?8)/ ?6)
    计量
    • 文章访问?87
    • HTML全文浏览野26
    • PDF下载野33
    • 被引次数:0
    出版历程
    • 收稿日期:2022-06-16
    • 修回日期:2022-10-21
    • 网络出版日期:2023-03-27
    • 刊出日期:2023-04-25

    目录

      Baidu
      map