留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

色季拉山急尖长苞冷杉林不同层次土壤CO2浓度及温湿度响应

曹丽芰/a>,刘合滠/a>,杨红,连玉珌/a>

downloadPDF
曹丽? 刘合? 杨红, 连玉? 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度及温湿度响应[J]. 北京林业大学学报, 2023, 45(2): 1-10. doi: 10.12171/j.1000-1522.20220222
引用本文: 曹丽? 刘合? 杨红, 连玉? 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度及温湿度响应[J]. 北京林业大学学报, 2023, 45(2): 1-10.doi:10.12171/j.1000-1522.20220222
Cao Lihua, Liu Heman, Yang Hong, Lian Yuzhen. Response of soil CO2 concentration at different depths of Abies georgei var. smithii forest to soil temperature and water content on Sejila Mountain, Tibet of southwestern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 1-10. doi: 10.12171/j.1000-1522.20220222
Citation: Cao Lihua, Liu Heman, Yang Hong, Lian Yuzhen. Response of soil CO2concentration at different depths ofAbies georgeivar.smithiiforest to soil temperature and water content on Sejila Mountain, Tibet of southwestern China[J].Journal of Beijing Forestry University, 2023, 45(2): 1-10.doi:10.12171/j.1000-1522.20220222
doi:10.12171/j.1000-1522.20220222
基金项目:国家自然科学基金项目?1561052?1461055),河南省科技攻关项目?02102310030?12102310981(/div>
详细信息
    作者简今

    曹丽花,副教授。主要研究方向:土壤有机碳循环。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:clh-m@163.com">clh-m@163.com 地址?64000 河南省信阳市北环?号信阳农林学陡/p>

    责任作耄

    刘合满,教授。主要研究方向:土壤有机碳循环与调控。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:hmliu@cau.edu.cn">hmliu@cau.edu.cn 地址:同三/span>

  • 中图分类叶S791.14;S154.6

Response of soil CO2concentration at different depths ofAbies georgeivar.smithiiforest to soil temperature and water content on Sejila Mountain, Tibet of southwestern China

  • 摘要: 目的揭示西藏高原森林生态系统不同层次土壤CO 2浓度变化特征及主要影响因素,为土壤呼吸CO 2排放变异性机制提供科学依据、/sec> 方法以西藏东南部典型森林生态区色季拉山(鲁朗段)为研究区,以急尖长苞冷杉林土壤为研究对象,原位监测不同层次(5?0?0?0?0 cm)土壤CO 2浓度,分析不同层次土壤CO 2浓度分布特征及对温度和含水量的响应、/sec> 结果?)各层次土壤CO 2浓度日均值表现为40 cm > 60 cm > 20 cm > 10 cm > 5 cm,平均值分别为5094?965?613?119?925 μmol/mol,且各层次之间均极显著正相关'i>P< 0.01)。(2)在日变化尺度上? ?0 cm层次土壤CO 2浓度具有相反的变化特征,分别呈现“V”字型和“单峰型”特征,5 cm土壤CO 2浓度最高值和最低值分别出现在22:00?3:00?2:00?3:00之间?0 cm层次分别出现?6:00?7:00?0:00?1:00之间,其他各层CO 2浓度日变化特征不明显。(3)不同层次土壤CO 2浓度对温度的响应存在一定的延迟效应,而表现出不同的响应曲线,其中表层5?0 cm呈现近似“椭圆”的响应曲线;(4)表层(5?0 cm)土壤CO 2浓度主要受含水量的显著影响,而下层(40?0 cm)主要受土壤温度的影响、/sec> 结论温度和含水量对不同层次土壤CO 2浓度具有不同的影响效应,并最终影响土体CO 2的传输和动态、/sec>

  • ?nbsp; 1不同深度土壤日均温度变化特征

    Figure 1.Variation characteristics of daily average soil temperature at different depths

    ?nbsp; 2不同深度土壤日均含水量变化特?/p>

    Figure 2.Variation characteristics of daily average soil water content at different depths

    ?nbsp; 3不同深度土壤CO2浓度日变化特?/p>

    Figure 3.Diurnal variation characteristics of soil CO2concentration at different depths

    ?nbsp; 4日变化尺度上不同深度土壤CO2浓度与土壤温度的相关?/p>

    Figure 4.Correlations between soil CO2concentration and soil temperature at different depths on the scale of daily variation

    ?nbsp; 5不同深度土壤CO2浓度与土壤温度的相关?/p>

    Figure 5.Correlations between soil CO2concentration and soil temperature at different depths

    ?nbsp; 20 ~ 60 cm剖面土壤温度与CO2浓度的相关系?/p>

    Table 2.Correlation coefficients between CO2concentration and soil temperature at 0?0 cm profile

    指标 Item 土壤温度 Soil temperature
    5 cm 10 cm 20 cm 40 cm 60 cm
    CO2浓度
    CO2concentration
    5 cm 0.2205 0.2646 0.4919* 0.7893** 0.8753**
    10 cm ?.0845 ?.0024 0.3777 0.8109** 0.9455**
    20 cm ?.1294 ?.0380 0.3724 0.8240** 0.9607**
    40 cm ?.0599 0.0419 0.4463* 0.8264** 0.9022**
    60 cm ?.1255 ?.0536 0.3437 0.8074** 0.9588**
    下载: 导出CSV

    ?nbsp; 30 ~ 60 cm剖面土壤含水量与CO2浓度的相关系?/p>

    Table 3.Correlation coefficients between CO2concentration and soil water content at 0?0 cm profile

    指标 Item 土壤含水 Soil water content
    5 cm 10 cm 20 cm 40 cm 60 cm
    CO2浓度
    CO2concentration
    5 cm 0.6381** 0.7133** 0.4336 0.2713 0.0723
    10 cm 0.8980** 0.8957** 0.4767* 0.2664 0.0408
    20 cm 0.9052** 0.9042** 0.4642* 0.2531 0.0202
    40 cm 0.8823** 0.9308** 0.5582* 0.3973 0.1608
    60 cm 0.8509** 0.8841** 0.4620* 0.2642 0.0241
    下载: 导出CSV
  • [2]Bond-Lambert Y B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464: 579?82. doi:10.1038/nature08930 [3]Oertel C, Matschullat J, Zurba K, et al. Greenhouse gas emissions from soils: a review[J]. Geochemistry, 2016, 76(3): 327?52. doi:10.1016/j.chemer.2016.04.002 [4]Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414: 169?72. doi:10.1038/35102500 [5]Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23?6. doi:10.1029/94GB02723 [6]Hashimoto S, Carvalhais N, Ito A, et al. Global spatiotemporal distribution of soil respiration modeled using a global database[J]. Biogeosciences Discussions, 2015, 12(13): 4121?132. doi:10.5194/bg-12-4121-2015 [7]Wang X, Liu L L, Piao S L, et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3229?237. doi:10.1111/gcb.12620 [8]Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China[J]. Global Change Biology, 2006, 12: 2103?114. doi:10.1111/j.1365-2486.2006.01234.x [9]Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences, 2014, 11: 259?68. doi:10.5194/bg-11-259-2014 [10]Schindlbacher A, Wunderlich S, Borken W, et al. Soil respiration under climate change: prolonged summer drought offsets soil warming effects[J]. Global Change Biology, 2012, 18(7): 2270?279. doi:10.1111/j.1365-2486.2012.02696.x [11]刘合? 曹丽? 李江? ? 色季拉山急尖长苞冷杉林不同层次土壤CO 2浓度对短时降雨的响应[J]. 生态学? 2020, 40(22): 8354?363.

    Liu H M, Cao L H, Li J R, et al. Response of soil CO 2concentration at different depth of Abies georgeivar. smithiiforest to short-time rainfall on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2020, 40(22): 8354?363. [12]Min K, Berhe A A, Khoi C M, et al. Differential effects of wetting and drying on soil CO 2concentration and flux in near-surface vs. deep soil layers[J]. Biogeochemistry, 2020, 148: 255?69. doi:10.1007/s10533-020-00658-7 [13]Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of boreal forest carbon balance to soil thaw[J]. Science, 1998, 279: 214?17. doi:10.1126/science.279.5348.214 [14]Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles: production and temperature dependence[J/OL]. Geophysical Research Letters, 2002, 29(6): 11-1?1-4[2022?1?5]. https://doi.org/10.1029/2001GL014002. [15]曹丽? 尹为? 刘合? ? 西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征[J]. 生态学? 2019, 39(11): 4029?038.

    Cao L H, Yin W L, Liu H M, et al. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2019, 39(11): 4029?038. [16]Zhou Y, Webste R R, Rossel R A V, et al. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s[J]. Geoderma, 2019, 334: 124?33. doi:10.1016/j.geoderma.2018.07.037 [17]孙亚? 王亚? 赵敏, ? 黄土丘陵区柠条人工林不同深度土壤呼吸速率对土壤温湿度的响应[J]. 环境科学, 2022, 43(10): 4648?657. doi:10.13227/j.hjkx.202112253

    Sun Y R, Wang Y J, Zhao M, et al. Response of soil respiration rates to soil temperature and moisture at different soil depths of Caragana korshinskiiplantation in the loess-hilly region[J]. Environmental Science, 2022, 43(10): 4648?657. doi:10.13227/j.hjkx.202112253 [18]Drewitt G B, Black T A, Jassal R S. Using measurements of soil CO 2efflux and concentrations to infer the depth distribution of CO 2production in a forest soil[J]. Canadian Journal of Soil Science, 2005, 85(2): 213?21. doi:10.4141/S04-041 [19]刘芳, 刘丛? 王仕? ? 喀斯特地区土壤剖面CO 2、CH 4和N 2O浓度的相关关系[J]. 生态学杂志, 2010, 29(4): 717?23.

    Liu F, Liu C Q, Wang S L, et al. Correlations among CO 2, CH 4and N 2O concentrations in soil profiles in central Guizhou karst area[J]. Chinese Journal of Ecology, 2010, 29(4): 717?23. [20]李晋? 姚楠, 李秀, ? 内蒙古典型草原季节性冻土区土壤剖面CO 2、N 2O特征[J]. 环境科学, 2018, 39(5): 2330?338.

    Li J B, Yao N, Li X, et al. Dynamics of CO 2and N 2O in seasonal frozen soil profiles for a typical steppe in Inner Mongolia[J]. Environmental Science, 2018, 39(5): 2330?338. [21]辛福? 刘济? 杨小? ? 色季拉山急尖长苞冷杉叶片及细根性状随海拔的变异特征[J]. 生态学? 2017, 37(8): 2719?728.

    Xin F M, Liu J M, Yang X L, et al. Variation in leaf and fine root traits with altitude in Abies georgeivar. smithiiin Mt. Shergyla[J]. Acta Ecologica Sinica, 2017, 37(8): 2719?728. [22]杨红, 柳文? 刘合? ? 高寒森林植物叶片−枯落物−土壤养分含量及化学计量特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 607?18.

    Yang H, Liu W J, Liu H M, et al. Nutrient contents and stoichiometric characteristics of plant leaf-litter-soil in alpine forest[J]. Journal of Zhengjiang University (Agriculture and Life Sciences), 2021, 47(5): 607?18. [23]韦玮, 丁贵? 陈伟, ? 一、二代马尾松林土壤微生物数量及酶活性垂直分布特征[J]. 重庆师范大学学报(自然科学?, 2017, 34(3): 114?20.

    Wei W, Ding G J, Chen W, et al. Vertical distribution characteristics of microorganism quantity and enzyme activity in soil of first- and second-generation of Pinus massonianaforest[J]. Journal of Chongqing Normal University (Natural Science), 2017, 34(3): 114?20. [24]施福? 黄则? 李婷, ? 望天树天然林土壤微生物生物量碳氮垂直分布及相关性分析[J]. 林业与环境科? 2018, 34(6): 72?6. doi:10.3969/j.issn.1006-4427.2018.06.012

    Shi F J, Huang Z Y, Li T, et al. Vertical changes of the soil microbial biomass and the correlation analysis in Parashorea chinensisnatural forest[J]. Forestry and Environmental Science, 2018, 34(6): 72?6. doi:10.3969/j.issn.1006-4427.2018.06.012 [25]Riveros-Iregui D A, Emanuel R E, Muth D J, et al. Diurnal hysteresis between soil CO 2and soil temperature is controlled by soil water content[J/OL]. Geophysical Research Letters, 2007, 34: L17404[2022?1?2]. https://doi.org/10.1029/2007GL030938. [26]刘合? 曹丽? 马和? 土壤呼吸日动态特征及其与大气温度、湿度的响应[J]. 水土保持学报, 2013, 27(1): 193?96, 202.

    Liu H M, Cao L H, Ma H P. Diurnal dynamics of soil respiration and response to atmospheric temperature, humidity in Linzhi Farmland[J]. Journal of Soil and Water Conservation, 2013, 27(1): 193?96, 202. [27]Spohn M, Holzheu S. Temperature controls diel oscillation of the CO 2concentration in a desert soil[J]. Biogeochemistry, 2021, 156: 279?92. doi:10.1007/s10533-021-00845-0 [28]Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396: 570?72. doi:10.1038/25119 [29]于雷, 王玉? 王云? ? 缙云山针阔混交林土壤各组分呼吸速率区分及其与环境因子的关系[J]. 环境科学研究, 2014, 27(8): 865?72.

    Yu L, Wang Y J, Wang Y Q, et al. Partition of soil respiration components and corresponding relationships with environmental factors in mixed forest at Jinyun Mountain, Chongqing[J]. Research of Environmental Sciences, 2014, 27(8): 865?72. [30]Maier M, Schack-Kirchner H, Hildebrand E E, et al. Pore-space CO 2dynamics in a deep, well-aerated soil[J]. European Journal of Soil Science, 2010, 61(6): 877?87. doi:10.1111/j.1365-2389.2010.01287.x [31]Jassal R, Black A, Novak M, et al. Relationship between soil CO 2concentrations and forest-floor CO 2effluxes[J]. Agricultural and Forest Meteorology, 2005, 130: 176?92. doi:10.1016/j.agrformet.2005.03.005 [32]Tang J W, Baldocchi D D, Qi Y, et al. Assessing soil CO 2efflux using continuous measurements of CO 2profiles in soils with small solid-state sensors[J]. Agricultural and Forest Meteorology, 2003, 118: 207?20. doi:10.1016/S0168-1923(03)00112-6 [33]郑鹏? 余新? 贾国? ? 北京山区不同植被类型的土壤呼吸特征及其温度敏感性[J]. 应用生态学? 2019, 30(5): 1726?734.

    Zheng P F, Yu X X, Jia G D, et al. Soil respiration and its temperature sensitivity among different vegetation types in Beijing mountain area, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1726?734.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?5)/ ?3)
    计量
    • 文章访问?183
    • HTML全文浏览野55
    • PDF下载野62
    • 被引次数:0
    出版历程
    • 收稿日期:2022-06-03
    • 修回日期:2022-12-24
    • 网络出版日期:2023-02-01
    • 刊出日期:2023-02-25

    目录

      Baidu
      map