留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

黄土高原地区4种常见树种适宜区对气候变化响库/p>

陈美霕/a>,韩海荢/a>

downloadPDF
陈美? 韩海? 黄土高原地区4种常见树种适宜区对气候变化响应[J]. 北京林业大学学报, 2023, 45(3): 21-33. doi: 10.12171/j.1000-1522.20220138
引用本文: 陈美? 韩海? 黄土高原地区4种常见树种适宜区对气候变化响应[J]. 北京林业大学学报, 2023, 45(3): 21-33.doi:10.12171/j.1000-1522.20220138
Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. doi: 10.12171/j.1000-1522.20220138
Citation: Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J].Journal of Beijing Forestry University, 2023, 45(3): 21-33.doi:10.12171/j.1000-1522.20220138
doi:10.12171/j.1000-1522.20220138
基金项目:国家重点研发计划?019YFA0607304(/div>
详细信息
    作者简今

    陈美霖。主要研究方向:森林生态学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:514783032@qq.com">514783032@qq.com 地址?00083北京市海淀区清华东?5号北京林业大学生态与自然保护学院

    责任作耄

    韩海荣,教授,博士生导师。主要研究方向:森林生态学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:hanhr@bjfu.edu.cn">hanhr@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S791;S793.3

Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China

  • 摘要: 目的分析黄土高原地区4个常见树种(樟子松、油松、柠条、华北落叶松)在当前和未来的潜在分布,揭示气候变化对植物空间分布格局的影响、/sec> 方法基于19个气候因子结合来自Ho1dridge生命地带模型和Kira指标体系?个指标:年生物温度(ABT)、潜在蒸散率(PER)、温暖指数(WI)、寒冷指数(CI)、干燥指数(HI),运用Maxent模型,模拟预测了4个树种在当前、未来(2041?060年?061?080年)ssp126、ssp245、ssp585气候情景下的潜在地理分布。运用刀切图分析影响其分布的主要环境因子,并采用受试者工作特征曲线(ROC)下的面积(AUC)对预测结果进行检验、/sec> 结果?)Maxent模型可以较好地模拟黄土高?个主要常见种的地理分布范围,各物种的10次平均AUC结果均大?.8;(2)对于樟子松、油松、柠条来说,温度和水分共同限制其分布,而对于华北落叶松来说,影响其分布的主导因子是降水。温度季节性变化标准差、潜在蒸散率、最湿润季节降雨量、最干燥月降水都影响樟子松分布。年均温变化范围、温度季节性变化标准差、最冷月最低温度,最暖季度降水量、潜在蒸散率是影响油松分布的主导因子。影响柠条适宜区分布的主导因子为最暖月最高温度、温暖指数、等温性和潜在蒸散率、最冷季度降水量。影响华北落叶松分布的主导因子主要与降水有关,分别是最湿润月降雨量、最湿润季节降雨量、降水量变异系数和潜在蒸散率。(3)油松、柠条和华北落叶松的潜在适生区将向西北方向迁移,樟子松的潜在适生区向西南方向迁移。油松和华北落叶松的潜在适宜区面积呈现先扩大后缩小的趋势,而柠条和樟子松的潜在适生区将持续扩张,尤其是樟子松的高适生区占比将?070s扩大?0.97%、/sec> 结论气候变化将使油松和华北落叶松丧失一部分的高适生区,但同时会使柠条和樟子松的高适生区扩张明显。在黄土高原退耕还林建设中,可优先考虑种植柠条和樟子松、/sec>

  • ?nbsp; 1当前4种主要常见树种在黄土高原地区分布现状

    Figure 1.Current distribution of four common tree species in the Loess Plateau region

    ?nbsp; 2刀切法分析环境变量重要?/p>

    Figure 2.Importance analysis of environmental variables based on Jackknife test

    ?nbsp; 3不同时期不同气候背景下樟子松适生区分市/p>

    Figure 3.Distribution of suitable areas ofPinus sylvestrisin different periods and climates

    ?nbsp; 4不同时期不同气候背景下油松适生区分市/p>

    Figure 4.Distribution of suitable areas ofPinus tabuliformisin different periods and climates

    ?nbsp; 5不同时期不同气候背景下柠条适生区分市/p>

    Figure 5.Distribution of suitable areas ofCaragana korshinskiiin different periods and climates

    ?nbsp; 6不同时期不同气候背景下华北落叶松适生区分市/p>

    Figure 6.Distribution of suitable areas ofLarix gmeliniivar.principis-rupprechtiiin different periods and climates

    ?nbsp; 24种常见树种的环境变量对模型预测的贡献玆/p>

    Table 2.Contribution rate of environmental variables of four common tree species to model prediction %

    环境变量
    Environment variable
    变量描述
    Variable description
    樟子杽br/>Pinus sylvestris 油松
    Pinus tabuliformis
    柠条
    Caragana korshinskii
    华北落叶杽br/>Larix gmeliniivar.principis-rupprechtii
    bio3 等温 Isothermality 4.1 8.5 5.9
    bio4 温度季节性变化标准差
    Standard deviation of seasonal variation of temperature
    48.8 16.8 12.7
    bio5 最暖月最高温
    Max. temperature of the warmest month
    20.3
    bio6 最冷月最低温
    Min. temperature of the coldest month
    10.1
    bio7 年均温变化范 (bio5~bio6
    Annual average temperature variation range(bio5−bio6(/td>
    18.5
    bio8 最湿季度平均温
    Mean temperature of the wettest quarter
    2.0 2.8
    bio13 最湿润月降雨量
    Precipitation of the wettest month
    1.0 1.1 6.9 31.2
    bio14 最干燥月降雨量
    Precipitation of the driest month
    10.1
    bio15 降水量变异系
    Precipitation variation coefficient
    14.7
    bio16 最湿润季节降雨
    Precipitation of the wettest quarter
    0.3 7.5 25.0
    bio17 最干燥季节降雨
    Precipitation of the driest quarter
    1.1
    bio18 最暖季度降水量
    Precipitation of the warmest quarter
    4.5 34.0
    bio19 最冷季度降水量
    Precipitation of the coldest quarter
    13.5
    ABT 年生物温 Annual bio-temperature 0.4
    PER 潜在蒸散玆br/>Potential evapotranspiration rate 32.9 11.6 27.4 9.0
    WI 温暖指数 Warmth index 3.8 13.2 0.4
    下载: 导出CSV
  • [2]Nadine B, Christoph S, Willy T. Impact of holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland[J]. Review of Palaeobotany and Palynology, 2012, 174: 91?00. doi:10.1016/j.revpalbo.2011.12.007 [3]Wang S, Meng F, Duan J, et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants[J]. Ecology, 2014, 95: 3387?398. doi:10.1890/13-2235.1 [4]Dorji T, Totland O, Moe S R, et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet[J]. Global Change Biology, 2013, 19: 459?72. doi:10.1111/gcb.12059 [5]Intergovernmental Panel on Climate Change. Fifth assessment report (AR5)[EB/OL]. (2013?06?07)[2018?07?08]. http://www.ipcc.ch/assessment-report/ar5/. [6]张雪? 高贤? 吉成? ? 中国北方5种栎属树木多度分布及其对未来气候变化的响应[J]. 植物生态学? 2019, 43(9): 774?82. doi:10.17521/cjpe.2018.0249

    Zhang X J, Gao X M, Ji C J, et al. Response of abundance distribution of five species of Quercusto climate change in northern China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 774?82. doi:10.17521/cjpe.2018.0249 [7]段义? 王海? 王驰, ? 气候变化下濒危植物半日花在中国的潜在分布[J]. 植物资源与环境学? 2020, 29(2): 55?8. doi:10.3969/j.issn.1674-7895.2020.02.07

    Duan Y Z, Wang H T, Wang C, et al. Potential distribution of endangered plant Helianthemum songaricumin China under climate change[J]. Journal of Plant Resources and Environment, 2020, 29(2): 55?8. doi:10.3969/j.issn.1674-7895.2020.02.07 [8]马松? 魏博, 李晓? ? 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243?250.

    Ma S M, Wei B, Li X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2017, 36(5): 1243?250. [9]宋文? 吴绍? 陶泽? ? ?0年中国中东部地区植物分布变化[J]. 地理研究, 2016, 35(8): 1420?432.

    Song W J, Wu S H, Tao Z X, et al. Distribution change of plants over mid-eastern China during last 30 years[J]. Geographical Research, 2016, 35(8): 1420?432. [10]Sharmin S, Tanjinul H M, Shiro T, et al. Predicting the probable impact of climate change on the distribution of threatened Shorea robustaforest in Purbachal, Bangladesh[J/OL]. Global Ecology and Conservation, 2020, 24: e01250[2022?12?21]. https://doi.org/10.1016/j.gecco.2020.e01250. [11]David N B, Mathieu B, Allison M B, et al. Comparing species distribution models constructed with different subsets of environmental predictors[J]. Diversity and Distributions, 2015, 21(1/2): 23?5. [12]李国? 刘长? 刘玉? ? 物种分布模型理论研究进展[J]. 生态学? 2013, 33(16): 4827?835. doi:10.5846/stxb201212031735

    Li G Q, Liu C C, Liu Y G, et al. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16): 4827?835. doi:10.5846/stxb201212031735 [13]刘晓? 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学? 2019, 43(4): 273?83.

    Liu X T, Yuan Q, Ni J. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273?83. [14]王志? 药用植物云南土沉香潜在适生区及关键气候因子的影响[J]. 生态学杂志, 2022, 41(10): 1991?1997.

    Wang Z W. The potential suitable areas and impact of key climatic factors of medicinal plant Excoecaria acerifoliaDidr[J/OL]. Chinese Journal of Ecology, 2022, 41(10): 1991?1997. [15]Duan X G, Li J Q, Wu S H. MaxEnt modeling to estimate the impact of climate factors on distribution of Pinus densiflora[J/OL]. Forests, 2022, 13(3): 402[2022?12?21]. https://doi.org/10.3390/f13030402. [16]张晓? 蒋玉? 毕阳, ? 基于MaxEnt模型的中国沙棘潜在适宜分布区分析[J]. 生态学? 2022, 42(4): 1420?428.

    Zhang X W, Jiang Y M, Bi Y, et al. ldentification of potential distribution area for Hippophae rhamnoidessubsp. sinensisby the MaxEnt model[J]. Acta Ecologica Sinica, 2022, 42(4): 1420-1428 [17]Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3?): 231?59. doi:10.1016/j.ecolmodel.2005.03.026 [18]柳晓? 李俊? 赵彩? ? 基于 MAXENT 模型 ArcGIS 预测豚草在中国的潜在适生区[J]. 植物保护学报, 2016, 43(6): 1041?048.

    Liu X Y, Li J S, Zhao C Y, et al. Prediction of potential suitable area of Ambrosia artemisiifoliaL. in China based on MAXENT and ArcGIS[J]. Chinese Journal of Plant Protection, 2016, 43(6): 1041?048. [19]Roberto M, Ricardo Z, Juan R M, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6(6): 364?70. doi:10.1016/j.ecoinf.2011.07.003 [20]Solhjouy-Fard S, Sarafrazi A, et al. Patterns of niche overlapping and richness among Geocorisspecies (Hemiptera: Geocoridae) in Iran[J]. Biocontrol Science & Technology, 2016, 26(9): 1197?211. [21]Phillips S J, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161?75. doi:10.1111/j.0906-7590.2008.5203.x [22]董光, 何兰, 程武? 基于MaxEnt和GIS技术的桔梗适宜性分布区划研究[J]. 中药? 2019, 42(1): 66?0.

    Dong G, He L, Cheng W X. Study on suitability distribution regionalization of Platycodon grandiflorumbased on Maxent and GIS[J]. Traditional Chinese Medicine, 2019, 42 (1): 66?0. [23]张满? 黄土高原退耕还林树种选择与配置[D]. 北京: 北京林业大学, 2004.

    Zhang M Q. Studies on tree species selection and arrangement in the Conversion of Farmland to Forest (CFF) Project on the Loess Plateau[D]. Beijing: Beijing Forestry University, 2004. [24]张玲. 甘肃中部退耕还林还草气候适应性分析−以定西市为例[J]. 甘肃科技, 2020, 36(18): 152?56. doi:10.3969/j.issn.1000-0952.2020.18.054

    Zhang L. Climate adaptability analysis of returning farmland to forestry and grassland in central Gansu: taking Dingxi City as an example[J]. Gansu Science and Technology, 2020, 36(18): 152?56. doi:10.3969/j.issn.1000-0952.2020.18.054 [25]魏安? 陕西吴起退耕还林植被恢复及常见造林树种适生性研究[D]. 北京: 北京林业大学, 2019.

    Wei A Q. Study on vegetation restoration and adaptability of common afforestation tree species in converted farmland to forestry region: a case of Wuqi County, Shaanxi Province[D]. Beijing: Beijing Forestry University, 2019. [26]Jiang X L, Deng M, Li Y. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: an insight from Quercus schottkyana(Fagaceae)[J/OL]. Tree Genetics & Genomes, 2016, 12(6): 104[2022?2?1]. DOI: 10.1007/s11295-016-1063-2. [27]李洁. 未来气候变化对中国6种典型落叶阔叶树种脆弱性研究[D]. 杨凌: 西北农林科技大学, 2020.

    Li J. Vulnerability of six typical deciduous broadleaved tree species to future climate change in China[D]. Yangling: Northwest A&F University, 2020. [28]Dyderski M K, Paź S, Frelich L E, et al. How much does climate change threaten European forest tree species distributions?[J]. Global Change Biology, 2018, 24(3): 1150?163. doi:10.1111/gcb.13925 [29]张晓? 西北旱区典型生态经济树种地理分布与气候适宜性研究[D]. 杨凌: 中国科学院大?中国科学院教育部水土保持与生态环境研究中?, 2018.

    Zhang X Q. Geographical distribution and climatic suitability of typical eco-economical tree species in the dryland of Northwest China[D]. Yangling: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Eco-Environment, Ministry of Education, Chinese Academy of Sciences), 2018. [30]吕振? 李文? 黄选瑞, ? 气候变化情景下河北?个优势树种适宜分布区预测[J]. 林业科学, 2019, 55(3): 13?1.

    Lü Z G, Li W B, Huang X R, et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province[J]. Scientia Silvae Sinicae, 2019, 55(3): 13?1. [31]张日? 贾树? 张国? ? 基于GIS的樟子松种植适宜性评价研究[J]. 土壤通报, 2019, 50(3): 555?61.

    Zhang R S, Jia S H, Zhang G J, et al. Suitability evaluation for Pinus sylvestrisvar. mongolicaplanting based on GlS[J]. Chinese Journal of Soil Science, 2019, 50(3): 555?61. [32]张晨? 张炜, 徐晶? ? 基于GIS和最大熵模型的河北省油松适宜性分布分析[J]. 地理与地理信息科? 2020, 36(6): 18?5.

    Zhang C X, Zhang W, Xu J J, et al. Analysis on suitability distribution of Pinus tabuliformisin Hebei Province based on GlS and MaxEnt model[J]. Geography and Geo-Information Science, 2020, 36(6): 18?5. [33]王子? 柴春? 张洋? ? 半干旱黄土区柠条生长与环境因子的关系研究进展[J]. 中国水土保持, 2021(1): 49?2.

    Wang Z T, Chai C S, Zhang Y D, et al. Research progress on relationship between Caragana korshinskiigrowth and environmental factors in the semi-arid loess area[J]. Soil and Water Conservation in China, 2021(1): 49?2. [34]穆喜? 乌志? 李显? ? 基于最大熵模型的赤峰市华北落叶松人工林适宜分布区估测[J]. 干旱区资源与环境, 2021, 35(6): 144?52.

    Mu X Y, Wu Z Y, Li X Y, et al. Estimation of the potential distribution areas of Larix principis-rupprechtiiplantation in Chifeng based on MaxEnt model[J]. Journal of Arid Land Resources and Environment, 2021, 35(6): 144?52. [35]Shao H, Zhang Y D, Gu F X, et al. Impacts of climate extremes on ecosystem metrics in southwest China[J/OL]. Science of the Total Environment, 2021, 776: 145979[2022?12?21]. https://doi.org/10.1016/j.scitotenv.2021.145979. [36]郑治? 邓艳? 黄永? 极端天气气候事件对江汉湖群湿地生态的影响研究[J]. 人民长江, 2021, 52(增刊2): 45?1.

    Zheng Z B, Deng Y J, Huang Y P. Study on impact of extreme weather and climate events on wetland ecology of Jianghan Lake Group[J]. Yangtze River, 201, 52(Suppl. 2): 45?1. [37]冯斌. 气候变化背景下广西自然保护区体系的管理有效性研究[D]. 北京: 中国林业科学研究? 2020.

    Feng B. Study on the management effectiveness of nature reserve system of Guangxi in the context of climate change[D]. Beijing: Chinese Academy of Forestry, 2020. [38]李雅, 于秀? 刘宇, ? 湿地植物功能性状对水文过程的响应研究进展[J]. 生态学杂志, 2018, 37(3): 952?59.

    Li Y, Yu X B, Liu Y, et al. Response of wetland plant functional traits to hydrological processes: a review[J]. Chinese Journal of Ecology, 2018, 37(3): 952?59. [39]霍宏? 马庆? 李京? ? 中国榛属植物种质资源分布格局及其适生区气候评价[J]. 植物遗传资源学报, 2016, 17(5): 801?08.

    Huo H L, Ma Q H, Li J J, et al. Study on the distribution of CorylusL. in China and the climatic evaluation of the suitable areas[J]. Journal of Plant Genetic Resources, 2016, 17(5): 801?08. [40]李灿. 濒危植物崖柏潜在分布区预测与生境时空变化定量研究[D]. 成都: 成都理工大学, 2018.

    Li C. A quantitative study on the prediction of potential distribution area and temporal and spatial changes of habitats of thuja, an endangered plant[D]. Chengdu: Chengdu University of Technology, 2018. [41]陈敏? 林而达. 代表性浓度路径情景下的全球温室气体减排和对中国的挑战[J]. 气候变化研究进? 2010, 6(6): 436?42.

    Chen M P, Lin E D. Global greenhouse gas emission mitigation under representative concentration pathways scenarios and challenges to China[J]. Climate Change Research, 2010, 6(6): 436?42.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?6)/ ?2)
    计量
    • 文章访问?179
    • HTML全文浏览野42
    • PDF下载野44
    • 被引次数:0
    出版历程
    • 收稿日期:2022-04-12
    • 修回日期:2022-06-22
    • 网络出版日期:2023-03-01
    • 刊出日期:2023-03-25

    目录

      Baidu
      map