留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

金沙江干热河谷冲沟系统优先流影响下的土壤可蚀?/p>

徐贵?/a>,赵洋毄/a>,王克勣/a>,段旭,李志戏/a>

downloadPDF
徐贵? 赵洋? 王克? 段旭, 李志? 金沙江干热河谷冲沟系统优先流影响下的土壤可蚀性[J]. 北京林业大学学报, 2023, 45(4): 101-113. doi: 10.12171/j.1000-1522.20220135
引用本文: 徐贵? 赵洋? 王克? 段旭, 李志? 金沙江干热河谷冲沟系统优先流影响下的土壤可蚀性[J]. 北京林业大学学报, 2023, 45(4): 101-113.doi:10.12171/j.1000-1522.20220135
Xu Guiqian, Zhao Yangyi, Wang Keqin, Duan Xu, Li Zhicheng. Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley[J]. Journal of Beijing Forestry University, 2023, 45(4): 101-113. doi: 10.12171/j.1000-1522.20220135
Citation: Xu Guiqian, Zhao Yangyi, Wang Keqin, Duan Xu, Li Zhicheng. Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley[J].Journal of Beijing Forestry University, 2023, 45(4): 101-113.doi:10.12171/j.1000-1522.20220135
doi:10.12171/j.1000-1522.20220135
基金项目:国家自然科学基金项目?2067005?1860235),云南省基础研究计划项目?02001AT070136),云南省人才专项(YNWR-QNBJ-2019-215、YNWR-QNBJ-2019-226),国家林草局云南玉溪森林生态系统国家长期科研基地(2020132550),云南省自然生态监测网络项目(2022-YN-13(/div>
详细信息
    作者简今

    徐贵迁。主要研究方向:水土保持。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:184316818@qq.com">184316818@qq.com 地址?50224云南省昆明市盘龙区西南林业大学生态与环境学院

    责任作耄

    赵洋毅,教授,博士生导师。主要研究方向:水土保持与恢复生态。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:yyz301@foxmail.com">yyz301@foxmail.com 地址:同三/span>

  • 中图分类叶S714;S157.1

Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley

  • 摘要: 目的为探究金沙江干热河谷冲沟系统优先流影响下的土壤可蚀性差异规律,揭示冲沟发育区土、水相互作用机理,为干热河谷地区水土流失治理及生态恢复提供理论依据、/sec> 方法在干热河谷典型冲沟发育区选择完整冲沟作为研究对象,基于染色示踪、土壤抗冲抗蚀及土壤理化试验,利用主成分分析等统计分析方法获取土壤优先流、土壤可蚀性指标及其相关关系,明晰集水区、沟壁、沟床、沟底完整冲沟系统土壤优先流特征,探究优先流和土壤可蚀性之间的关系、/sec> 结果干热河谷冲沟优先流类型以“大孔隙流”为主,伴随“指流”和“漏斗流”,优先流百分数呈集水区 > 沟壁 > 沟床 > 沟底,说明冲沟上游优先流发育程度高于下游。冲沟内优先流区有机质含量、土壤含水率均高于基质流区,机械组成黏粒、粉粒、砂粒配比优先流区优于基质流区,土壤密度优先流区低于基质流区。冲沟内优先流区土壤抗冲系数小于基质流区,表明优先流会使土壤稳定性降低,抗蚀指数呈优先流区大于基质流区,说明土壤水分溶质运移会使局部土壤抗蚀性提高。冲沟系统土壤可蚀性因子( K)与优先流百分数、优先流区染色面积比、最大染色深度均呈正相关关系,同时主成分分析显示以上3个因子是影响土壤可蚀性的主要因子、/sec> 结论优先流发育程度高的土层中优先流区 K值总是大于基质流区,在优先流发育不足土层中则相反,优先流发育一定程度上会提高土壤可蚀性、/sec>

  • ?nbsp; 1研究区及采样点位?/p>

    A、B、C、D分别代表集水区、沟壁、沟床、沟底,1??表示3次重复试验。A, B, C, D represent the catchment area, gully wall, gully bed, gully bottom, respectively; 1, 2, 3 indicate three repeated tests.

    Figure 1.Location of the study area and sampling sites

    ?nbsp; 2染色试验及染色剖面处理图

    Figure 2.Dyeing experiment and dyeing profile treatment

    ?nbsp; 3土壤基本特?/p>

    A、B、C、D分别代表集水区、沟壁、沟床、沟底,R、W分别代表优先流区和基质流区。不同小写字母表示同一土层不同样地间显著性差异(P?.05)。同? A, B, C, D represent the catchment area, gully wall, gully bed, gully bottom, respectively; R, W represent the preferential flow area and the matrix flow area, respectively. Different lowercase letters indicate significant differences between different sites in the same soil layer (P< 0.05). Same as table 2.

    Figure 3.Basic soil properties

    ?nbsp; 4冲沟不同部位土壤垂直剖面染色国/p>

    A、B、C、D分别代表集水区、沟壁、沟床、沟底,1 ~ 3表示该区3次重复试验。A, B, C, D represent the catchment area, gully wall, gully bed, gully bottom, and 1? indicate three repetitions of the experiment, respectively.

    Figure 4.Soil vertical profile staining of different parts of the gully

    ?nbsp; 5冲沟不同部位土壤剖面染色面积比随土层的变匕/p>

    1 ~ 3表示3次重复试验剖面,4表示3个剖面的平均值?? represent the three replicate test profiles, and 4 represents the average of the 3 profiles.

    Figure 5.Variation of soil profile staining area ratio in different parts of gullies with soil layers

    ?nbsp; 6优先流区和基质流区抗冲系?/p>

    小写字母不同表示不同分区差异显著'i>P< 0.05)。Different lowercase letters indicate significant differences between different partitions (P< 0.05).

    Figure 6.Impact resistance coefficients of preferential flow area and matrix flow area

    ?nbsp; 7土壤抗蚀指数动态变化过稊/p>

    Figure 7.Dynamic change process of corrosion resistance index

    ?nbsp; 8优先流和基质流区土壤可蚀?i>K值变化图

    大写字母不同表示不同土层差异显著'i>P< 0.05),小写字母不同表示不同分区差异显著'i>P< 0.05)。Different capital letters indicate significant differences between varied soil layers (P< 0.05), different lowercase letters indicate significant differences between different partitions (P< 0.05).

    Figure 8.Variation of soil corrosionKvalues in the preferential flow area and matrix flow area

    ?nbsp; 9冲沟不同部位优先流因子与土壤可蚀性的主成分分枏/p>

    Figure 9.Principal component analysis of preferential flow factor and soil corrosivity in different parts of the gully

    ?nbsp; 2冲沟区不同部位土壤垂直剖面优先流指标统计分析

    Table 2.Statistical analysis of preferential flow indexes of soil vertical profile in different parts of the gully area

    优先流指 Preferential flow index 样地名称 Sample plot name
    集水 Catchment area 沟壁 Gully wall 沟床 Gully bed 沟底 Gully bottom
    染色面积 Dyeing area ratio/% 27.85 ± 0.56d 42.93 ± 1.49b 50.55 ± 3.89a 40.02 ± 2.77bc
    基质流深 Matrix flow depth/cm 4.69 ± 1.66d 11.06 ± 1.44bc 16.93 ± 2.75a 13.28 ± 0.88ab
    最大染色深 Maximum dyeing depth/cm 42.47 ± 0.91a 41.96 ± 1.21a 43.45 ± 1.34a 38.40 ± 1.92a
    优先流区染色面积 Dyeing area ratio of preferential flow area/% 18.90 ± 4.33a 23.34 ± 3.98a 18.61 ± 2.40a 12.46 ± 1.74b
    优先流百分数 Percentage of preferential flow/% 64.68 ± 2.78a 46.96 ± 3.58b 32.08 ± 2.32c 31.55 ± 2.45c
    注:表中数据为“平均 ± 标准差” Note: data in the table are “mean ± standard deviation?
    下载: 导出CSV

    ?nbsp; 3优先流指标与土壤可蚀性相关分枏/p>

    Table 3.Correlation analysis between preferential flow indicators and soil erodibility

    土壤可蚀性指
    Soil erodibility index
    优先流指 Preferential flow index 相关系数
    Correlation coefficient
    P
    K 染色面积 Dyeing area ratio (X1) ?.453 0.078
    基质流深 Matrix flow depth (X2) ?.634 0.008
    最大染色深 Maximum dyeing depth (X3) 0.588 0.017
    优先流区染色面积 Dyeing area ratio of preferential flow area (X4) 0.522 0.038
    优先流百分数 Percentage of preferential flow (X5) 0.668 0.005
    下载: 导出CSV

    ?nbsp; 4优先流指标对K值影响的主成分分枏/p>

    Table 4.Principal component analysis of the impact of preferential flow index onKvalue

    主成刅br/>Principal component 特征倻br/>Eigenvalue 方差贡献玆br/>Variance contribution rate/% 方差累计贡献玆br/>Cumulative contribution
    rate of variance/%
    X1 X2 X3 X4 X5
    1 3.58 59.64 59.64 ?.37 ?.45 0.30 0.31 0.51
    2 1.58 26.38 86.02 0.56 0.32 0.51 0.54 ?.06
    3 0.51 8.43 94.45 ?.14 0.13 0.60 ?.63 ?.28
    下载: 导出CSV
  • [2]杨振? 苏建? 罗栋, ? 干热河谷植被恢复研究进展与展望[J]. 林业科学研究, 2007, 20(4): 563?68. doi:10.3321/j.issn:1001-1498.2007.04.024

    Yang Z Y, Su J R, Luo D, et al. Progress and perspectives on vegetation restoration in the dry-hot valley[J]. Forest Research, 2007, 20(4): 563?68. doi:10.3321/j.issn:1001-1498.2007.04.024 [3]杨丹, 熊东? 张宝? ? 沟床草被对干热河谷冲沟产沙特性影响的野外模拟试验[J]. 农业工程学报, 2015, 31(15): 124?32. doi:10.11975/j.issn.1002-6819.2015.15.017

    Yang D, Xiong D H, Zhang B J, et al. Field experiment on impacts of grass belt length on characteristics of sediment yields and transport rates for gullies in Jinsha dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 124?32. doi:10.11975/j.issn.1002-6819.2015.15.017 [4]井光? 于兴? 李振? 土壤可蚀性研究进展综述[J]. 中国水土保持, 2011(10): 44?7, 66. doi:10.3969/j.issn.1000-0941.2011.10.018

    Jing G H, Yu X X, Li Z W. Summary of study progress on soil erodibility[J]. Soil and Water Conservation in China, 2011(10): 44?7, 66. doi:10.3969/j.issn.1000-0941.2011.10.018 [5]Wiekenkamp I, Huisman J A, Bogena H R, et al. Spatial and temporal occurrence of preferential flow in a forested headwater catchment[J]. Journal of Hydrology, 2016, 534: 139?49. doi:10.1016/j.jhydrol.2015.12.050 [6]Shao W, Bogaard T, Ye S, et al. Coupling a 1D Dual-permeability model with an infinite slope stability approach to quantify the influence of preferential flow on slope stability[J]. Procedia Earth and Planetary Science, 2016, 16: 128?36. doi:10.1016/j.proeps.2016.10.014 [7]王赵? 辛颖, 赵雨? 黑龙江省水源地优先流区与基质流区土壤特性分析[J]. 水土保持学报, 2017, 31(1): 49?4.

    Wang Z N, Xin Y, Zhao Y S. Analysis on soil characters of preferential pathways and soil matrix in water-source area of Heilongjiang Province[J]. Journal of Soil and Water Conservation, 2017, 31(1): 49?4. [8]盛丰, 张利? 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1?0. doi:10.11975/j.issn.1002-6819.2016.06.001

    Sheng F, Zhang L Y, Wu D. Review on research theories and observation techniques of preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 1?0. doi:10.11975/j.issn.1002-6819.2016.06.001 [9]Song Z, Zhou Q Y, Lu D B, et al. Application of electrical resistivity tomography for investigating the internal structure and estimating the hydraulic conductivity of in situ single fractures[J]. Pure and Applied Geophysics, 2022, 179: 1253?273. doi:10.1007/s00024-022-02972-7 [10]马昀, 孟晨, 岳健? ? 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究[J]. 生态学? 2022, 42(3): 895?03.

    Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskiishrubland in different years of desert grassland in Ningxia[J]. Acta Ecologica Sinica, 2022, 42(3): 895?03. [11]盛丰, 文鼎, 熊祎? ? 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117?24. doi:10.11975/j.issn.1002-6819.2021.08.013

    Sheng F, Wen D, Xiong Y W, et al. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 117?24. doi:10.11975/j.issn.1002-6819.2021.08.013 [12]Karup D, Moldrup P, Paradelo M, et al. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents[J]. Journal of Contaminant Hydrology, 2016, 192: 194?02. doi:10.1016/j.jconhyd.2016.08.001 [13]阮芯? 重庆四面山不同土地利用类型优先路径特征[D]. 北京: 北京林业大学, 2016.

    Ruan X Z. The characteristics of preferential paths in different land use types at Simianshan in Chongqing[D]. Beijing: Beijing Forestry University, 2016. [14]邵一? 赵洋? 段旭, ? 金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J]. 应用生态学? 2020, 31(3): 725?34.

    Shao Y M, Zhao Y Y, Duan X, et al. Effects of plant roots on soil preferential flow in typical forest and grassland in the dry-hot valley of Jinsha River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 725?34. [15]邵一? 赵洋? 段旭, ? 基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J]. 西北农林科技大学学报(自然科学?, 2020, 48(7): 102?12.

    Shao Y M, Zhao Y Y, Duan X, et al. Distribution characteristics of typical soil-specific routes in dry-heat valley regions based on fractal analysis[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(7): 102?12. [16]万艳? 赵洋? 段旭, ? 干湿交替对红河干旱河谷区土壤优先流形成特征的影响[J]. 应用生态学? 2021, 32(7): 2397?406.

    Wan Y P, Zhao Y Y, Duan X, et al. Influence of alternated drying and wetting on the characteristics of soil preferential flow formation in Honghe Arid Valley.[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2397?406. [17]Wu X L, Dang X H, Meng Z J, et al. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. [J/OL]. The Science of the total environment, 2021, 813: 152082[2022?04?20]. https://doi.org/10.1016/j.scitotenv.2021.152082. [18]Verachtert E, van den Eeckhaut M, Poesen J, et al. Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils[J]. Earth Surface Processes and Landforms, 2013, 38(8): 826?35. doi:10.1002/esp.3325 [19]张素, 熊东? 张宝? ? 干湿交替下干热河谷冲沟不同土层的抗侵蚀性研究[J]. 农业机械学报, 2016, 47(12): 152?59, 212. doi:10.6041/j.issn.1000-1298.2016.12.019

    Zhang S, Xiong D H, Zhang B J, et al. Soil erosion resistance under dry-wet alternation in different layers of dry-hot valley region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 152?59, 212. doi:10.6041/j.issn.1000-1298.2016.12.019 [20]何周? 金沙江干热河谷乡土植物恢复对冲沟沟壁溯源侵蚀的影响[D]. 雅安: 四川农业大学, 2020.

    He Z Y. Impacts of native native vegetation on headcut erosion in hot and dry valley of Jinsha River[D]. Yaan: Sichuan Agricultural University, 2020. [21]Johnbosco C E, Ogbonnaya I. Assessing the role of soil engineering properties in gully growth and enlargement in southeast Nigeria using geostatistical and novel indexical techniques[J/OL]. Environmental Earth Sciences, 2022, 81: 7[2022?05?03]. https://doi.org/10.1007/s12665-021-10127-5. [22]González M J C, Borselli L, Meza J V G. Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion[J]. Journal of South American Earth Sciences, 2021, 111: 103?17. [23]Haddad H, Magali J, Cédric L, et al. Spatial variability of the erodibility of fine sediments deposited in two alpine gravel-bed rivers: the Isère and Galabre[J/OL]. Catena, 2022, 212(6): 106084[2022?12?30]. https://doi.org/10.1016/j.catena.2022.106084. [24]张岩, 高驰? 杨瑾, ? 基于历史卫星影像估算黄土丘陵区冲沟发育速率[J]. 农业工程学报, 2022, 38(1): 109?16. doi:10.11975/j.issn.1002-6819.2022.01.012

    Zhang Y, Gao C Y, Yang J, et al. Estimating the gully growth rate in the hilly Loess Plateau using historical satellite images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 109?16. doi:10.11975/j.issn.1002-6819.2022.01.012 [25]文孝? 董一? 杨己, ? 元谋干热河谷冲沟发育区植被恢复对土壤碳氮的影响[J]. 水土保持学报, 2021, 35(4): 282?88.

    Wen X L, Dong Y F, Yang J, et al. Effects of vegetation restoration on soil carbon and nitrogen in gully development area of Yuanmou Dry-Hot Valley[J]. Journal of Soil and Water Conservation, 2021, 35(4): 282?88. [26]Zhang K L, Shu A P, Xu X L, et al. Soil erodibility and its estimation for agricultural soils in China[J]. Journal of Arid Environments, 2008, 72(6): 1002?011. doi:10.1016/j.jaridenv.2007.11.018 [27]陈安? 张丹, 范建? ? 元谋干热河谷沟壁崩塌的力学机制与模拟试验[J]. 中国水土保持科学, 2012, 10(3): 29?5. doi:10.3969/j.issn.1672-3007.2012.03.005

    Chen A Q, Zhang D, Fan J R, et al. Mechanical mechanism and simulation experiment of the collapse of gully cliff in Yuanmou Dry-Hot Valley[J]. Science of Soil and Water Conservation, 2012, 10(3): 29?5. doi:10.3969/j.issn.1672-3007.2012.03.005 [28]Liu Y, Zhang Y H, Xie L M, et al. Effect of soil characteristics on preferential flow of Phragmites australiscommunity in Yellow River Delta[J/OL]. Ecological Indicators, 2021, 125: 107486[2022?05?10]. https://doi.org/10.1016/j.ecolind.2021.107486. [29]Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes: significance and progress[J]. Catena, 2016, 147: 153?66. doi:10.1016/j.catena.2016.07.012 [30]de Rooij G H. Modeling fingered flow of water in soils owing to wetting front instability: a review[J]. Journal of Hydrology, 2000, 231?32(1?): 277?94. [31]朱明? 谭淑? 顾胜? ? 湖北丹江口水库库区小流域土壤可蚀性特征[J]. 土壤通报, 2010, 42(2): 434?36.

    Zhu M Y, Tan S D, Gu S L, et al. Characteristics of soil erodibility in the Danjiangkou Reservoir Region, Hubei Province[J]. Chinese Journal of Soil Science, 2010, 42(2): 434?36. [32]Müller K, Katuwal S, Young I, et al. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma, 2018, 313: 82?1. doi:10.1016/j.geoderma.2017.10.020 [33]卢华? 段旭, 赵洋? ? 滇中磨盘山典型林分土壤优先流特征及其归因分析[J]. 西北农林科技大学学报(自然科学?, 2022, 50(7): 48?2.

    Lu H X, Duan X, Zhao Y Y, et al. Characteristics and attribution analysis of soil preferential flow in typical stand of Mopan Mountain in Central Yunnan[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 48?2. [34]解璐? 张英? 张明? ? 黄河三角洲刺槐群落土壤优先流及养分分布特征[J]. 生态学? 2021, 41(19): 7713?724.

    Xie L M, Zhang Y H, Zhang M X, et al. Soil preferential flow and nutrient distribution of Robinia pseudoacaciaLinn. community in Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(19): 7713?724. [35]Edwards W M, Shipitalo M J, Owens L B, et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Journal of Environmental Quality, 1993, 22(3): 453?57. [36]Julich D, Julich S, Feger K H, et al. Phosphorus in preferential flow pathways of forest soils in Germany[J/OL]. Forests, 2016, 8(1): 19[2021?4?0]. https://doi.org/10.3390/f8010019.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?9)/ ?4)
    计量
    • 文章访问?127
    • HTML全文浏览野47
    • PDF下载野38
    • 被引次数:0
    出版历程
    • 收稿日期:2022-04-11
    • 修回日期:2023-03-06
    • 网络出版日期:2023-03-08
    • 刊出日期:2023-04-25

    目录

      Baidu
      map