留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

不同波长极化SAR数据水云模型森林生物量反演对比分枏/p>

姬永?/a>,徐昆鹎/a>,张王菱/a>,史建敎/a>,张甫馘/a>

downloadPDF
姬永? 徐昆? 张王? 史建? 张甫? 不同波长极化SAR数据水云模型森林生物量反演对比分析[J]. 北京林业大学学报, 2023, 45(2): 24-33. doi: 10.12171/j.1000-1522.20220006
引用本文: 姬永? 徐昆? 张王? 史建? 张甫? 不同波长极化SAR数据水云模型森林生物量反演对比分析[J]. 北京林业大学学报, 2023, 45(2): 24-33.doi:10.12171/j.1000-1522.20220006
Ji Yongjie, Xu Kunpeng, Zhang Wangfei, Shi Jianmin, Zhang Fuxiang. Comparative analysis of forest biomass retrieval from water cloud model (WCM) of polarized SAR data with different wavelengths[J]. Journal of Beijing Forestry University, 2023, 45(2): 24-33. doi: 10.12171/j.1000-1522.20220006
Citation: Ji Yongjie, Xu Kunpeng, Zhang Wangfei, Shi Jianmin, Zhang Fuxiang. Comparative analysis of forest biomass retrieval from water cloud model (WCM) of polarized SAR data with different wavelengths[J].Journal of Beijing Forestry University, 2023, 45(2): 24-33.doi:10.12171/j.1000-1522.20220006
doi:10.12171/j.1000-1522.20220006
基金项目:国家自然科学基金项目?1871279?2160365?2161059?1860240(/div>
详细信息
    作者简今

    姬永杰,博士,副教授。主要研究方向:SAR自然资源遥感研究。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:jiyongjie@live.cn">jiyongjie@live.cn 地址?50224云南省昆明市盘龙区白龙路白龙?00号西南林业大?/p>

    责任作耄

    张王菲,博士,教授,博士生导师。主要研究方向:农林业遥感研究。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:mewhff@163.com">mewhff@163.com 地址:同三/span>

  • 中图分类叶S771.8

Comparative analysis of forest biomass retrieval from water cloud model (WCM) of polarized SAR data with different wavelengths

  • 摘要: 目的水云模型(WCM)是一种采用SAR数据反演森林地上生物量(AGB)应用较为广泛的半经验模型,探索将不同波长、极化方式、极化信息等引入WCM,以期为提高森林AGB反演精度提供科学依据、/sec> 方法本文以X、C、L、P波段多频极化SAR数据为数据源,首先将各波长各极化后向散射系数用于WCM进行森林AGB反演,对比其反演精度;接着采用极化分解分量构建地体散射比参数,并将其引入WCM发展为极化水云模型(PolWCM),同时对比分析其在X、C、L、P波段森林AGB的反演结果、/sec> 结果?)在X、C、L、P 4个波段中,除X波段外,将HV极化后向散射系数代入WCM进行森林AGB反演,精度均高于基于其他极化通道后向散射系数的反演结果;且长波长(L和P)的反演精度高于短波长(X和C)的反演精度。在L波段,将HV极化后向散射系数代入WCM进行森林AGB反演+i>R 2和RMSE分别?.46?8.00 t/hm 2;P波段HV极化反演结果皃i>R 2和RMSE分别?.43?1.18 t/hm 2。(2)将极化信息以地体散射比的形式引入WCM,PolWCM模型在X、C、L、P各个波段均可提高反演精度,反演结果的RMSE值分别为24.90?4.71?7.70?8.08 t/hm 2、/sec> 结论采用WCM进行森林AGB反演具有极化、波长依赖性,其中将L波段HV极化后向散射系数代入WCM进行森林AGB反演时精度最优;将极化信息以地体散射比的方式引入WCM,发展PolWCM,可以明显提高森林AGB的反演精度、/sec>

  • ?nbsp; 1研究区地理位?/p>

    Figure 1.Geographic location of the study area

    ?nbsp; 2X、C、L、P 4个波段覆盖范围概况图及地理编码后Pauli RGB

    HH和HV分别为HH和HV两个极化后向散射系数。HH and HV are polarization backscattering coefficients of HH and HV, respectively.

    Figure 2.Overview of the coverage of SAR data and their geocoded images displayed as Pauli RGB at X-, C-, L- and P-band

    ?nbsp; 3多频SAR数据预处理技术路纾/p>

    “――”代表数据提供方已作辐射定标,本文不需再作定标。“―― means that the data provider has made radiometric calibration and no further calibration is required in this paper.

    Figure 3.Flowchart of multifrequency SAR data preprocessing technology

    ?nbsp; 4LiDAR提取研究区相关数?/p>

    Figure 4.LiDAR extracts relevant data of the study area

    ?nbsp; 5X、C、L、P波段WCM反演森林AGB

    散点图中的红色实体线为森林AGB估测值拟合线,黑色点为训练样本,蓝色点为验证样本。图中RMSE单位为t/hm2。下同。The red solid line in the scatter diagram is the fitting line of forest AGB estimation values, the black points are the training samples, and the blue points are the verification samples. The unit of RMSE is t/ha. The same below.

    Figure 5.X-, C-, L-, P-band WCM inversion results of forest AGB

    ?nbsp; 6X、C、L、P波段PolWCM反演森林AGB结果

    FOdd咋i>FVol分别为Freeman极化分解三分量中的地表散射与体散射分量、i>FOddandFVolare the surface scattering and volume scattering components of Freeman polarization decomposition.

    Figure 6.Forest AGB retrieved by PolWCM at X-, C-, L- and P-band

    ?nbsp; 2X、C、L、P波段WCM反演结果

    Table 2.Inversion results of WCM for X-, C-, L- and P-band

    波段
    Band
    极化通道
    Polarization channel
    R2 RMSE/(t·hm?)
    RMSE/(t·ha?)
    X HH 0.03 26.12
    HV 0.01 26.49
    VV 0.05 25.70
    C HH 0.19 24.32
    HV 0.33 23.32
    VV 0.30 22.76
    L HH 0.24 21.27
    HV 0.46 18.00
    VV 0.30 20.34
    P HH 0.12 27.40
    HV 0.43 21.18
    VV 0.09 27.04
    下载: 导出CSV

    ?nbsp; 3X、C、L、P 波段PolWCM反演森林AGB结果

    Table 3.Inversion forest AGB results of PolWCM for X-, C-, L- and P-band

    参数
    Parameter
    波段
    Band
    R2 RMSE/(t·hm?)
    RMSE/(t·ha-1)
    FOdd/FVol
    X 0.00 24.90
    C 0.01 24.71
    L 0.40 17.70
    P 0.51 18.08
    注:FOdd咋i>FVol分别为Freeman极化分解三分量中的地表散射与体散射分量。Note:FOddandFVolare the surface scattering and volume scattering components of Freeman polarization decomposition.
    下载: 导出CSV
  • [2]West P W. Tree and forest measurement[M]. Berlin: Springer Nature, 2004. [3]Chen L, Wang Y, Ren C, et al. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging[J]. Forest Ecology and Management, 2019, 447: 12?5. doi:10.1016/j.foreco.2019.05.057 [4]Toan T L, Beaudoin A, Riom J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 403?11. doi:10.1109/36.134089 [5]陈尔? 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6): 18?3.

    Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18?3. [6]姬永? 张王? 森林地上生物量合成孔径雷达技术反演研究综述[J]. 世界林业研究, 2022, 35(3): 32?9.

    Ji Y J, Zhang W F. Review on retrieval of forest aboveground biomass by SAR technology[J]. World Forestry Research, 2022, 35(3): 32?9. [7]李云, 张王? 崔鋆? ? 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11?9.

    Li Y, Zhang W F, Cui J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11?9. [8]史建? 张王? 曾鹏, ? 联合GF-1和GF-3影像的森林地上生物量反演[J]. 北京林业大学学报, 2022, 44(11): 70?1.

    Shi J M, Zhang W F, Zeng P, et al. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70?1. [9]Attema E, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357?64. doi:10.1029/RS013i002p00357 [10]杨贵? 岳继? 李长? ? 基于改进水云模型和Radarsat-2数据的农田土壤含水量估算[J]. 农业工程学报, 2016, 32(22): 146?53.

    Yang G J, Yue J B, Li C H, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 146?53. [11]张智? 基于极化SAR的小麦倒伏灾害与长势监测研究[D]. 西安: 西安科技大学, 2017.

    Zhang Z H. Research on wheat condition and growth monitoring based on compact polarimetric SAR[D]. Xi’an: Xi’an University of Science and Technology, 2017. [12]Hosseini M, Mcnairn H, Mitchell S, et al. A comparison between support vector machine and water cloud model for estimating crop leaf area index[J/OL]. Remote Sensing, 2021, 13(7): 1348[2021?03?01]. https://doi.org/10.3390/rs13071348. [13]Santoro M, Askne J, Eriksson L, et al. Seasonal dynamics and stem volume retrieval in boreal forests using JERS-1 backscatter[C]. Proceedings of SPIE. Berlin: the International Society for Optical Engineering, 2003. [14]戴玉? 凌飞? 水云模型于L波段SAR和中国北方森林的适用性分析[J]. 遥感信息, 2013, 28(4): 44?9.

    Dai Y F, Ling F L. Suitability analysis of water cloud model for L-band synthetic aperture radar to forest in northeast China[J]. Remote Sensing Information, 2013, 28(4): 44?9. [15]Askne J I H, Dammert P B G, Ulander L M H, et al. C-band repeat-pass interferometric SAR observations of the forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 25?5. doi:10.1109/36.551931 [16]Cartus O, Santoro M, Kellndorfer J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band[J]. Remote Sensing of Environment, 2012, 124: 466?78. doi:10.1016/j.rse.2012.05.029 [17]Santoro M, Eriksson L E B, Fransson J E S. Reviewing ALOS PALSAR backscatter observations for stem volume retrieval in swedish forest[J]. Remote Sensing, 2015, 7(4): 4290?317. doi:10.3390/rs70404290 [18]Santoro M, Cartus O. Research pathways of forest above-ground biomass estimation based on SAR backscatter and interferometric SAR observations[J/OL]. Remote Sensing, 2018, 10(4): 608[2018?04?01]. https://doi.org/10.3390/rs10040608. [19]Santoro M, Beer C, Cartus O, et al. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements[J]. Remote Sensing of Environment, 2011, 115: 490?07. doi:10.1016/j.rse.2010.09.018 [20]张伟? 张延? 范文? ? 干涉水云模型对不同极化方式哨兵数据估测森林生物量的精度比较[J]. 东北林业大学学报, 2020, 48(11): 27?2.

    Zhang W L, Zhang Y C, Fan W Y, et al. Comparison of biomass accuracy with different polarization data with interferometric water cloud model[J]. Journal of Northeast Forestry University, 2020, 48(11): 27?2. [21]穆喜? 森林地上生物量遥感估测方法研究[D]. 呼和浩特: 内蒙古农业大? 2015.

    Mu X Y. A study on the estimating method of forest above ground biomass based on remote sensing data[D]. Hohhot: Inner Mongolia Agricultural University, 2015. [22]冯琦, 陈尔? 李增? ? 基于机载P波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10?2.

    Feng Q, Chen E X, Li Z Y, et al. Forest above-ground biomass estimation method of rugged terrain based on airborne P-band PolSAR data[J]. Scientia Silvae Sinicae, 2016, 52(3): 10?2. [23]Pulliainen J, Heiska K, Hyyppae J, et al. Backscattering properties of boreal forests at C and X-band[J]. Ieee Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1041?050. doi:10.1109/36.312892 [24]Cartus O, Santoro M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest[J/OL]. Remote Sensing of Environment, 2019, 232: 111313[2022?07?01]. https://doi.org/10.1016/j.rse.2019.111313. [25]Kumar S, Pandey U, Kushwaha S P, et al. Aboveground biomass estimation of tropical forest from Envisat advanced synthetic aperture radar data using modeling approach[J/OL]. Journal of Applied Remote Sensing, 2012, 6(1): 063588[2021?10?12]. https://doi.org/10.1117/1.JRS.6.063588.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?6)/ ?3)
    计量
    • 文章访问?338
    • HTML全文浏览野57
    • PDF下载野64
    • 被引次数:0
    出版历程
    • 收稿日期:2021-01-03
    • 修回日期:2022-02-06
    • 网络出版日期:2023-01-04
    • 刊出日期:2023-02-25

    目录

      Baidu
      map