留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影哌/p>

姜帆,阿斯哇/a>,蔡竟芲/a>,孙凯,沈一娇/a>,高海燔/a>,李红丼/a>

downloadPDF
姜帆, 阿斯? 蔡竟? 孙凯, 沈一? 高海? 李红? 干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210552
引用本文: 姜帆, 阿斯? 蔡竟? 孙凯, 沈一? 高海? 李红? 干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响[J]. 北京林业大学学报.doi:10.12171/j.1000-1522.20210552
Jiang Fan, Asiha, Cai Jingfang, Sun Kai, Shen Yiluan, Gao Haiyan, Li Hongli. Short-term effects of disturbance and nitrogen deposition on Alternanthera philoxeroides invading wetland plant communities[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210552
Citation: Jiang Fan, Asiha, Cai Jingfang, Sun Kai, Shen Yiluan, Gao Haiyan, Li Hongli. Short-term effects of disturbance and nitrogen deposition onAlternanthera philoxeroidesinvading wetland plant communities[J].Journal of Beijing Forestry University.doi:10.12171/j.1000-1522.20210552
doi:10.12171/j.1000-1522.20210552
基金项目:国家重点研发计划?021YFC2600405),水体污染控制与治理科技重大专项(No.2017ZX07602-004-003),中央高校基本科研业务费专项(2015ZCQ-BH-01(/div>
详细信息
    作者简今

    姜帆。主要研究方向:湿地植被恢复与重建。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:1061449208@qq.com">1061449208@qq.com 地址?00083北京市海淀区北京林业大学生态与自然保护学院

    责任作耄

    李红丽,教授。主要研究方向:湿地生态学、入侵生态学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:lihongli327@163.com">lihongli327@163.com 地址:同三/span>

Short-term effects of disturbance and nitrogen deposition onAlternanthera philoxeroidesinvading wetland plant communities

  • 摘要: 目的干扰和氮沉降是影响植物入侵的重要环境要素。目前,干扰和氮沉降如何协同影响空心莲子草入侵湿地植物群落的研究相对缺乏。本研究探讨了干扰、氮沉降和湿地植物群落对空心莲子草入侵的短期影响,为入侵植物空心莲子草的物理控制及湿地植被的恢复与重建提供了一定的理论支撑和实践基础、/sec> 方法以入侵植物空心莲子草为主要研究对象,构建4种湿地植物粉绿狐尾藻、水葱、黄花鸢尾和千屈菜组成的湿地植物群落,设计干扰(无干扰、模拟采食、刈割)、氮沉降(无氮添加和氮添加)以及有无湿地植物群落竞争(仅空心莲子草单种模式和空心莲子草与湿地植物群落混种模式)的三因素控制试验、/sec> 结果模拟采食和刈割两种干扰显著降低了空心莲子草的生长繁殖指标,且刈割相较于模拟采食影响更大。刈割处理下空心莲子草生物量、茎长和节数的相对生长率为负值,同时,刈割处理下空心莲子草生物量、茎长和分枝数的补偿系数均显著小于模拟采食处理,但存在欠补偿生长;湿地植物群落显著影响了空心莲子草根、叶、总生物量、叶片数、茎长和分枝数等指标;而氮沉降仅显著影响了空心莲子草分枝数补偿系数。除叶片数和分枝补偿系数,干扰与氮沉降对空心莲子草入侵的湿地植物群落并没有显著的交互作用、/sec> 结论模拟采食和刈割两种干扰一定程度上抑制空心莲子草的入侵,且随着干扰强度增加,对空心莲子草生长恢复抑制效应越强。氮沉降对空心莲子草综合指标影响不显著。本地湿地植物群落一定程度上可抑制空心莲子草入侵。而干扰与氮沉降的交互作用仅对空心莲子草叶片数和分枝数补偿系数有显著影响,对其入侵的湿地植物群落并无显著作用、/sec>

  • ?nbsp; 1试验设计国/p>

    对照为无氮沉降,为喷施同量的去离子水。The control is no nitrogen deposition, and the same amount of deionized water is sprayed.

    Figure 1.Experimental design drawing

    ?nbsp; 2干扰、氮沉降及湿地植物群落对空心莲子草生物量指标的影哌/p>

    对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式。大写字母A表示有无氮沉降差异显著,不同小写字母abc表示干扰差异显著,不同小写字母xy表示有无湿地植物群落差异显著。下同。The control is a single species model ofA. philoxeroides, and the community is a mixed species model ofA. philoxeroidesand wetland plant communities. The capital letter A indicates whether there is significant difference in nitrogen deposition, different lowercase letters abc indicate significant difference in disturbance, and different lowercase letters xy indicate whether there is significant difference in wetland plant community. The same below.

    Figure 2.Effects of disturbance, nitrogen deposition and plant community on the biomass index ofA. philoxeroides

    ?nbsp; 3干扰、氮沉降及湿地植物群落对空心莲子草其他生长指标的影响

    Figure 3.Effects of disturbance, nitrogen deposition and wetland plant community on other growth indexes ofA. philoxeroides

    ?nbsp; 4干扰、氮沉降和湿地植物群落对空心莲子草生长指标相对生长率的影哌/p>

    Figure 4.Effects of disturbance, nitrogen deposition and wetland plant community on the RGR ofA. philoxeroides

    ?nbsp; 5干扰、氮沉降和湿地植物群落对空心莲子草补偿系数的影响

    *表明t-检验结果显示与1.0之间无显著差异,即为等量补偿。对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式? indicates that there is no significant difference between the t-test result and 1.0, which is equal compensation. The control is a single species model ofA. philoxeroides, and the community is a mixed species model ofA. philoxeroidesand wetland plant community.

    Figure 5.Effects of disturbance, nitrogen deposition and plant community on the CI ofA. philoxeroides

    ?nbsp; 6干扰和氮沉降对被空心莲子草入侵的湿地植物群落的整体生长指标的影响

    不同大写字母表示有无干扰显著差异,不同小写字母表示有无氮沉降显著差异。Different uppercase letters indicate significant difference in disturbance, while different lowercase indicate significant difference in nitrogen deposition.

    Figure 6.Effects of disturbance and nitrogen deposition on the overall growth of wetland plant communities invaded byA. philoxeroides

    ?nbsp; 7干扰、氮沉降及湿地植物群落对空心莲子草所有生长指标的影响

    实线表示促进作用,虚线表示抑制作用?**表示P< 0.05?*表示P< 0.01。数值表示三个处理对生长指标的综合影响。gof是一种模型整体拟合度指标,反映模型拟合数据的程度。拟合优度的取值范围为0?1。N为氮沉降,D为干扰,C为群落,SH为模拟采食,M为刈割,K为空心莲子草的所有生长指标,R为根生物量,S茎生物量,L为叶生物量,T为总生物量,NL为叶片数,IL为节间长,NI为节数,SL为茎长,NR为分枝。The solid line indicates the promoting effect, the dashed line indicates the inhibitory effect. *** indicatesP< 0.05, ** indicatesP< 0.01. The numerical indicates the comprehensive impact of three treatments on growth indicators. Gof is an indicator of the overall fit of a model, reflecting the degree to which the model fits the data. The value range of Goodness of fit is 0?1. N is nitrogen deposition, D is disturbance, C is community, SH is simulated herbivory, M is mowing, K is the total growth indexes ofA. philoxeroides, R is root biomass, S is stem biomass, L is leaf biomass, T is total biomass, NL is the number of leaves, IL is internode length, NI is number of internodes, SL is stem length, NR is the number of ramets.

    Figure 7.Effect of disturbance, nitrogen deposition and wetland plant community on the total growth indexes ofA. philoxeroides

    ?nbsp; 1干扰、氮沉降及群落对空心莲子草生长的影响

    Table 1.Effects of disturbance, nitrogen deposition and wetland plant community on growth traits ofA. philoxeroides

    指标Index 二级指标 Secondary index 干扰 Disturbance (D) 氮沉 Nitrogen deposition (N) 群落 Community (C) D×N D×C N×C D×N×C
    生物 Biomass 根生物量 Root biomass 25.497*** 0.885 12.881** 0.449 1.174 0.020 0.697
    茎生物量 Stem biomass 68.514*** 0.289 3.952 0.236 2.701 0.191 0.123
    叶生物量 Leaf biomass 52.331*** 0.395 18.869*** 0.265 7.982** 0.001 0.123
    总生物量 Total biomass 66.938*** 0.423 9.733** 0.231 4.457* 0.064 0.138
    生长指标 Growth index 叶片 Number of leaf 131.223*** 0.734 19.582*** 3.465** 9.794*** 1.465 0.459
    节间 Internode length 6.862** 3.129 3.419 0.882 0.482 0.069 0.190
    节数 Number of internode 148.776*** 0.170 0.503 1.121 0.090 0.369 0.207
    茎长 Stem length 357.447*** 1.922 18.329*** 0.221 0.454 1.566 0.995
    分枝 Number of ramet 71.112*** 0.137 7.802** 2.438 7.271** 0.137 0.157
    相对生长 Relative growth rate (RGR) 生物量相对生长率 Biomass RGR 568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669
    叶片数相对生长率 RGR of leaf number 223.261*** 0.482 21.877*** 2.608 5.247** 1.692 1.692
    茎长相对生长 RGR of stem length 568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669
    节数相对生长 RGR of internode number 184.376*** 0.054 0.676 0.876 0.138 0.200 0.200
    补偿系数Compensation index (CI) 生物量补偿系?sup>aBiomass CIa 58.763*** 1.717 4.981* 0.198 0.004 0.663 0.264
    茎长补偿系数 CI of stem length 257.899*** 0.495 0.006 0.017 0.334 0.019 0.722
    分枝数补偿系 CI of ramet number 101.221*** 7.746* 22.956*** 7.474* 8.822** 2.278 0.315
    注:数字显示的是F值,标粗表示具有显著性、sup>*表示P< 0.05+sup>**表示P< 0.01+sup>***表示P< 0.001。a表示数据经过取对数数据转换。下同。Notes: the number shows theFvalue, and the bold mark indicates significant.*meansP< 0.05,**meansP< 0.01,***meansP< 0.001. a means data has been converted from logarithmic data. The same below.

    ?nbsp; 2干扰和氮沉降对湿地植物群落生物量的影哌/p>

    Table 2.Effects of disturbance and nitrogen deposition on the biomass of wetland plant communities

    项目 Item 生物 Biomass D N D×N
    整体群落 Whole community 总生物量 Total biomass 0.047 0.174 0.381
    地上生物 Aboveground biomass 0.104 0.001 0.277
    地下生物 Underground biomass 0.435 0.490 0.304
    粉绿狐尾Myriophyllum aquaticum 总生物量 Total biomass 0.086 0.885 0.050
    地上生物 Aboveground biomass 0.050 0.548 0.015
    地下生物 Underground biomass 0.826 1.815 0.276
    黄花鸢尾Iris wilsonii 总生物量 Total biomass 0.352 0.885 0.050
    地上生物 Aboveground biomass 0.613 0.645 0.148
    地下生物 Underground biomass 0.454 1.068 0.268
    千屈Lythrum salicaria 总生物量 Total biomass 0.473 0.477 0.520
    地上生物 Aboveground biomass 0.582 0.914 0.448
    地下生物 Underground biomass 0.285 0.074 0.527
    水葱Scirpus validus 总生物量 Total biomass 0.607 0.158 0.332
    地上生物 Aboveground biomass 0.224 1.954 1.419
    地下生物 Underground biomass 0.564 0.001 0.133
    注:数字显示得是F值。Note: the digital display is theFvalue.
    下载: 导出CSV
  • [2]彭少? 向言? 植物外来种入侵及其对生态系统的影响[J]. 生态学? 1999, 19(4): 560?68. doi:10.3321/j.issn:1000-0933.1999.04.024

    Peng S L, Xiang Y C. The invasion of exotic plants and effects of ecosystems[J]. Acta Ecologica Sinica, 1999, 19(4): 560?68. doi:10.3321/j.issn:1000-0933.1999.04.024 [3]Mack R N, Simberloff D, Lonsdale W M, et al. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecological Applications, 2000, 10(3): 689?10. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 [4]Seebens H, Bacher S, Blackburn T M, et al. Projecting the continental accumulation of alien species through to 2050[J]. Global Change Biology, 2021, 27(5): 970?82. doi:10.1111/gcb.15333 [5]陈俊? 浅谈生物入侵机制中的假说[J]. 农业与技? 2020, 40(4): 51?3. doi:10.19754/j.nyyjs.20200229014

    Chen J F. A brief talk on hypotheses in the mechanism of biological invasion[J]. Agriculture and Technology, 2020, 40(4): 51?3. doi:10.19754/j.nyyjs.20200229014 [6]Manzoor S A, Griffiths G, Lukac M. Land use and climate change interaction triggers contrasting trajectories of biological invasion[J]. Ecological Indicators, 2021, 120: 106936. doi:10.1016/j.ecolind.2020.106936 [7]Quijano-Medina T, Covelo F, Moreira X, et al. Compensation to simulated insect leaf herbivory in wild cotton ( Gossypium hirsutum): responses to multiple levels of damage and associated traits[J]. Plant Biology, 2019, 21(5): 805?12. doi:10.1111/plb.13002 [8]高芳? 郭素? 闫明, ? 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学? 2018, 38(7): 2344?352.

    Gao F L, Guo S M, Yan M, et al. Effects of simulated insect herbivory on the growth and chemical defense of Alternanthera philoxeroidesin different habitats[J]. Acta Ecologica Sinica, 2018, 38(7): 2344?352. [9]申? 郭文? 王伟, ? 地上−地下植食性天敌对入侵植物空心莲子草与本地种莲子草种间关系的影响[J]. 应用生态学? 2021, 32(8): 2975?981.

    Shen S, Guo W F, Wang W, et al. Effects of above- and below-ground herbivore interactions on interspecific relationship between the invasive plant Alternanthera philoxeroidesand its native congener Alternanthera sessilis[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2975?981. [10]Kumaran N, Lockett C, Dhileepan K. Effect of simulated herbivory on bellyache bush ( Jatropha gossypiifoliaL.) growth and implications for biological control[J]. Weed Biology and Management, 2018, 18(4): 151?59. doi:10.1111/wbm.12159 [11]闫卫? 不同刈割强度对北方农牧交错带草地生态系统温室气体通量的影响[D]. 太谷: 山西农业大学, 2019.

    Yan W D. Effects of different cutting intensities on greenhouse gas fluxes in grassland ecosystem in northern agro-pastoral ecotone[D]. Jinzhong: Shanxi Agricultural University, 2019. [12]王楠? 皇甫超河, 陈冬? ? 刈割对外来入侵植物黄顶菊的生长、气体交换和荧光的影响[J]. 生态学? 2012, 32(9): 2943?952. doi:10.5846/stxb201103160328

    Wang N N, Huangfu C H, Chen D Q, et al. Effects of clipping on the growth, gas exchange and chlorophyll fluorescence of invasive plant Flaveria bidentis[J]. Acta Ecologica Sinica, 2012, 32(9): 2943?952. doi:10.5846/stxb201103160328 [13]Bozzolo F H, Lipson D A. Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community[J]. Plant and Soil, 2013, 371(1/2): 37?1. [14]Yu H W, He W M. Congeneric invasive versus native plants utilize similar inorganic nitrogen forms but have disparate use efficiencies[J]. Journal of Plant Ecology, 2021, 14(2): 180?90. doi:10.1093/jpe/rtaa085 [15]周一? 张玉? 马望, ? 氮添加和干旱对呼伦贝尔草?种植物性状的影响[J]. 生态环境学? 2020, 29(1): 41?8.

    Zhou Y P, Zhang Y G, Ma W, et al. Effects of nitrogen addition and water reduction on the traits of five plants in Hulunbeir Grassland[J]. Ecology and Environmental Sciences, 2020, 29(1): 41?8. [16]陆光? 王晋? 桑卫? 氮沉降对外来种豚草入侵能力与竞争能力的影响[J]. 东北林业大学学报, 2012, 40(6): 60?6. doi:10.3969/j.issn.1000-5382.2012.06.016

    Lu G Y, Wang J P, Sang W G. Effects of nitrogen deposition on invasive and competitive abilities of an alien plant Ambrosia artemisiifolia[J]. Journal of Northeast Forestry University, 2012, 40(6): 60?6. doi:10.3969/j.issn.1000-5382.2012.06.016 [17]吴昊, 张三? 姬秋? ? 异质生境对水生型空心莲子草−双穗雀稗共存的影响[J]. 应用生态学? 2022, 33(1): 85?6.

    Wu H, Zhang S Y, Ji Q B, et al. Effect of heterogeneous habitats on species coexistence of aquatic ecotype Alternanthera philoxeroidesand Paspalum paspaloides[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 85?6. [18]Jeschke J M. General hypotheses in invasion ecology[J]. Diversity and Distributions, 2014, 20(11): 1229?234. doi:10.1111/ddi.12258 [19]Wang Z X, He Z S, He W M. Nighttime climate warming enhances inhibitory effects of atmospheric nitrogen deposition on the success of invasive Solidago canadensis[J]. Climatic Change, 2021, 167(1/2): 20. doi:10.1007/s10584-021-03175-0 [20]Livingstone S W, Isaac M E, Cadotte M W. Invasive dominance and resident diversity: unpacking the impact of plant invasion on biodiversity and ecosystem function[J/OL]. Ecological Monographs, 2020, 90(4): e01425 [2021?2?9]. https://doi.org/10.1002/ecm.1425. [21]Geng X M, He W M. Success of native and invasive plant congeners depends on inorganic nitrogen compositions and levels[J]. Journal of Plant Ecology, 2021, 14(2): 202?12. doi:10.1093/jpe/rtaa088 [22]陈燕? 陈中? 空心莲子草入侵控制的生态学研究进展[J]. 湖北农业科学, 2010, 49(9): 2260?263, 2267. doi:10.3969/j.issn.0439-8114.2010.09.068

    Chen Y L, Chen Z Y. Ecology research progress on invasion control of alligator weed Alternanthera philoxeroides(Mart.) Griseb[J]. Hubei Agricultural Sciences, 2010, 49(9): 2260?263, 2267. doi:10.3969/j.issn.0439-8114.2010.09.068 [23]Geng Y, Gao L, Yang J. Epigenetic flexibility underlying phenotypic plasticity[M]. Heidelberg: Springer, 2013. [24]Gao L X, Geng Y P, Li B, et al. Genome-wide DNA methylation alterations of Alternanthera philoxeroidesin natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation[J]. Plant, Cell & Environment, 2010, 33(11): 1820?827. [25]Burns J H. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients[J]. Diversity & Distributions, 2004, 10(5/6): 387?97. [26]秦启? 赵昕, 周守? 水禾和粉绿狐尾藻对生活污水净化效果研究[J]. 安徽师范大学学报(自然科学?, 2020, 43(5): 452?58. doi:10.14182/J.cnki.1001-2443.2020.05.007

    Qin Q W, Zhao X, Zhou S B. Study on purification effect of Hygroryza aristataand Myriophyllum aquaticumvulgare on domestic sewage[J]. Journal of Anhui Normal University (Natural Science), 2020, 43(5): 452?58. doi:10.14182/J.cnki.1001-2443.2020.05.007 [27]冯春? 孙梅, 田昆, ? 模拟增温对水葱输导组织的影响[J]. 东北林业大学学报, 2020, 48(4): 24?8. doi:10.3969/j.issn.1000-5382.2020.04.005

    Feng C H, Sun M, Tian K, et al. Effect of conducting tissue of Scirpus validusto simulated warming[J]. Journal of Northeast Forestry University, 2020, 48(4): 24?8. doi:10.3969/j.issn.1000-5382.2020.04.005 [28]雷晓? 黄花鸢尾微生态系统底泥覆盖的水质效应研究[D]. 南京: 南京大学, 2018.

    Lei X H. Study the effects of sediment capping on water quality in an Iris wilsoniimicrocosm[D]. Nanjing: Nanjing University, 2018. [29]孙焕? 李静, 封晓? ? 盐胁迫对荷兰菊、千屈菜及狼尾草生长的影响[J]. 河北林业科技, 2020(2): 13?6.

    Sun H R, Li J, Feng X H, et al. Effects of salt stress on the growth of Symphyotrichum novi-belgii, Lythrum salicariaand Pennisetum alopecuroides[J]. The Journal of Hebei Forestry Science and Technology, 2020(2): 13?6. [30]杨翔? 董炜? 陆娟, ? 生物质炭对黄花鸢尾湿地浮游植物群落的影响[J]. 吉林大学学报(理学?, 2018, 56(1): 184?89.

    Yang X Y, Dong W H, Lu J, et al. Effects of biochar on phytoplankton community in Iris wilsoniiwetland[J]. Journal of Jilin University (Science Edition), 2018, 56(1): 184?89. [31]周建. 环境因子对空心莲子草种内和种间关系的影响[D]. 北京: 北京林业大学, 2015.

    Zhou J. Effects of environmental factors on interspecific and intraspecific relationships of Alternanthera philoxeroides[D]. Beijing: Beijing Forestry University, 2015. [32]赵鸿? 张勇, 崔媛, ? 退化梯度上滇西北高山草甸植物群落的补偿生长能力[J]. 草业科学, 2020, 37(6): 1025?034. doi:10.11829/j.issn.1001-0629.2019-0526

    Zhao H Y, Zhang Y, Cui Y, et al. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province[J]. Pratacultural Science, 2020, 37(6): 1025?034. doi:10.11829/j.issn.1001-0629.2019-0526 [33]申时? 徐高? 李天? ? 5种入侵植物补偿反应及其形态可塑性比较[J]. 西北植物学报, 2012, 32(1): 173?79. doi:10.3969/j.issn.1000-4025.2012.01.028

    Shen S C, Xu G F, Li T L, et al. Comparative study of compensatory response and morphological plasticity of five invasive plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 173?79. doi:10.3969/j.issn.1000-4025.2012.01.028 [34]赵威, 王艳? 李亚? 草地入侵植物对枝叶去除的生理生态响库 模式、机理与研究展望[J]. 草业学报, 2017, 26(6): 195?02. doi:10.11686/cyxb2016368

    Zhao W, Wang Y J, Li Y G. The eco-physiological responses of invasive plants to defoliation in grassland: patterns, mechanisms, and research prospects[J]. Acta Prataculturae Sinica, 2017, 26(6): 195?02. doi:10.11686/cyxb2016368 [35]廖慧? 周婷, 陈宝? ? 外来入侵植物的生态控制[J]. 中山大学学报(自然科学?, 2021, 60(4): 1?1.

    Liao H X, Zhou T, Chen B M, et al. Ecological control of exotic invasive plants[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(4): 1?1. [36]陈中? 陈燕? 李华? 几种物理方式控制空心莲子草种群生长的效应研究[J]. 长江大学学报(自然科学?, 2014, 11(17): 47?1.

    Chen Z Y, Chen Y L, Li H C. Study on the effect of several physical methods on controlling the growth of Alternanthera philoxeroidescommunity[J]. Journal of Yangtze University (Natural Science Edition), 2014, 11(17): 47?1. [37]周颖, 刘杰, 闫晓? ? 模拟昆虫取食对牛膝菊防御特征的影响[J]. 应用生态学? 2022, 33(3): 808?12. doi:10.13287/j.1001-9332.202202.036

    Zhou Y, Liu J, Yan X H, et al. Effects of simulated insect herbivory on the defense traits of Galinsoga parviflora[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 808?12. doi:10.13287/j.1001-9332.202202.036 [38]周雨? 李凌? 高俊? ? 种间竞争对入侵植物和本地植物生长的影响[J]. 生态学杂志, 2016, 35(6): 1504?510.

    Zhou Y L, Li L Y, Gao J Q, et al. Effects of interspecific competition on the growth of invasive and native species[J]. Chinese Journal of Ecology, 2016, 35(6): 1504?510. [39]Grime J P. The role of plasticity in exploiting environmental heterogeneity[J/OL]. Exploitation of Environmental Heterogeneity by Plants, 1994: 1?19[2021?12?18]. https://doi.org/10.1016/B978-0-12-155070-7.50006-8. [40]Belsky A J, Carson C L, Jensen C L, et al. Overcompensation by plants: herbivore optimization or red herring[J]. Evolutionary Ecology, 1993, 7(1): 109?21. doi:10.1007/BF01237737 [41]杨中? 张家? 楚莉? ? 施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响[J]. 生态学杂志, 2012, 31(9): 2276?282.

    Yang Z L, Zhang J Y, Chu L L, et al. Effects of fertilization and mowing on community biomass compensation in eastern alpine meadow of Tibetan Plateau[J]. Chinese Journal of Ecology, 2012, 31(9): 2276?282. [42]Lamb E G, Stewart A C, Cahill J F. Root system size determines plant performance following short-term soil nutrient pulses[J]. Plant Ecology, 2012, 213(11): 1803?812. doi:10.1007/s11258-012-0135-0 [43]刘琳. 氮沉降、繁殖体压力及基因型对加拿大一枝黄? Solidago canadensisL.)入侵的影响[D]. 北京: 北京林业大学, 2018.

    Liu L. Effects of nitrogen pulses, propagule pressure and genotypic diversity on the invasion of Solidago canadensisL[D]. Beijing: Beijing Forestry University, 2018. [44]孙思邈, 陈吉? 冯炜? ? 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样? 2021, 29(1): 72?0. doi:10.17520/biods.2020072

    Sun S M, Chen J X, Feng W W, et al. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions[J]. Biodiversity Science, 2021, 29(1): 72?0. doi:10.17520/biods.2020072 [45]王桔? 陈文, 张燕? ? 不同入侵程度的微甘菊及本土种豨莶碳氮磷化学计量特征与营养策略[J]. 生态学杂志, 2020, 39(6): 1994?003.

    Wang J H, Chen W, Zhang Y F, et al. Carbon, nitrogen, and phosphorus stoichiometry and nutrition strategy of invasive species Mikania micranthawith three invasive degrees and native species Siegesbeckia orientalis[J]. Chinese Journal of Ecology, 2020, 39(6): 1994?003. [46]陈旭, 王国? 彭培? ? 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样? 2021, 29(7): 865?74. doi:10.17520/biods.2020485

    Chen X, Wang G Y, Peng P H, et al. Effects of taxonomic and phylogenetic diversity of resident Pinus yunnanensiscommunities on Ageratina adenophorainvasion in the Panxi Region, Sichuan Province[J]. Biodiversity Science, 2021, 29(7): 865?74. doi:10.17520/biods.2020485
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?7)/ ?2)
    计量
    • 文章访问?325
    • HTML全文浏览野132
    • PDF下载野51
    • 被引次数:0
    出版历程
    • 收稿日期:2021-12-29
    • 修回日期:2022-03-29
    • 网络出版日期:2022-08-06

    目录

      Baidu
      map