留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

短轮伐期毛白杨S86纸浆林生长对沟灌水肥耦合的响库/p>

杨红靑/a>,王亚飝/a>,贾黎昍/a>

downloadPDF
杨红? 王亚? 贾黎? 短轮伐期毛白杨S86纸浆林生长对沟灌水肥耦合的响应[J]. 北京林业大学学报, 2023, 45(3): 68-78. doi: 10.12171/j.1000-1522.20210465
引用本文: 杨红? 王亚? 贾黎? 短轮伐期毛白杨S86纸浆林生长对沟灌水肥耦合的响应[J]. 北京林业大学学报, 2023, 45(3): 68-78.doi:10.12171/j.1000-1522.20210465
Yang Hongqing, Wang Yafei, Jia Liming. Response of pulp plantation growth of Populus tomentosa S86 in short rotation period to coupling of water and fertilizer in furrow irrigation[J]. Journal of Beijing Forestry University, 2023, 45(3): 68-78. doi: 10.12171/j.1000-1522.20210465
Citation: Yang Hongqing, Wang Yafei, Jia Liming. Response of pulp plantation growth ofPopulus tomentosaS86 in short rotation period to coupling of water and fertilizer in furrow irrigation[J].Journal of Beijing Forestry University, 2023, 45(3): 68-78.doi:10.12171/j.1000-1522.20210465
doi:10.12171/j.1000-1522.20210465
基金项目:国家自然科学基金项目?1670625(/div>
详细信息
    作者简今

    杨红青。主要研究方向:用材林和能源林培育理论与技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:15935667603@163.com">15935667603@163.com 地址?00083 北京市海淀区清华东?5号北京林业大学林学院

    责任作耄

    贾黎明,教授,博士生导师。主要研究方向:用材林和能源林培育理论与技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:jlm@bjfu.edu.cn">jlm@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S792.117

Response of pulp plantation growth ofPopulus tomentosaS86 in short rotation period to coupling of water and fertilizer in furrow irrigation

  • 摘要: 目的研究沟灌水氮耦合对三倍体毛白杨S86高密度短轮伐期纸浆林林木生长和林分生产力的影响,旨在为选择适合当地的高效沟灌−施肥技术制度提供科学理论依据、/sec> 方法以山东省高唐县三倍体毛白杨S86为研究对象,采用完全随机区组试验设计,监?个灌溉水平,即土壤水势值达到−20 kPa(W1)、−33 kPa(W2)、−45 kPa(W3)时开始灌溉,?个施氮水平(N1?20 kg/(hm 2·a);N2?90 kg/(hm 2·a);N3?60 kg/(hm 2·a);N4? kg/(hm 2·a))组合下短轮伐期内?017?020年)胸径、相对生长率、蓄积、生产力的变化规律,并设置无灌溉施肥作为对照处理(CK)、/sec> 结果三倍体毛白杨S86的胸径生长速生期持续较长,生长季内各处理不同林龄林分胸径生长均符合Logistic函数'i>R 2> 0.99),各沟灌施肥处理的差异主要表现?月份。沟灌施氮处理对2年生毛白杨S86林木胸径增长量、相对生长率有显著影响( P< 0.05),而对3 ~5年生毛白杨S86林木影响不显著。水肥耦合措施? ~ 3年生林木平均蓄积量和平均生产力促进作用较强,而对4 ~5年生林木促进作用不显著。毛白杨S86林木4年的年均生产力为19.65 ~ 25.31 m 3/(hm 2·a),其中年均生产力最大的处理W1N1,显著高于CK 28.41%'i>P< 0.05);5年生林分W1N1处理下林木生长最优,单位面积蓄积和平均生产力分别达到104.39 m 3/hm 2?7.42 m 3/(hm 2·a),较CK处理分别提高28.15%?1.74%、/sec> 结论沟灌水肥耦合措施? ~ 3年生三倍体毛白杨林木的单位面积蓄积和年度生产力有不同程度的提高,而对4 ~ 5年生毛白杨S86单位面积蓄积和年度生产力无明显作用,其中W1N1沟灌施氮处理生长最优;在气候和土壤条件相近条件下,保持水分充足(灌溉阈值为?0 kPa)以及较低的施氮量(120 kg/(hm 2·a))时最有利于以纸浆林为培育目标的高密度短轮伐期毛白杨林木的生长、/sec>

  • ?nbsp; 12017?020年胸径增量变化趋劾/p>

    Figure 1.Changing trend of DBH from 2017 to 2020

    ?nbsp; 22017?020胸径生长Logistic拟合曲线

    Figure 2.Logistic fitting curves of DBH growth in 2017?020

    ?nbsp; 32017?020年各处理单位面积蓄积变化

    Figure 3.Changes in volume per unit area of each treatment from 2017 to 2020

    ?nbsp; 2田间试验水氮随机区组设计

    Table 2.Random block design of water and nitrogen in field experiment

    区组 Block 水肥处理 Water and fertilizer treatment
    ⅟/td> W3N3 W2N3 CK W1N2 W3N1 W2N4 W2N1 W1N3 W3N2 W3N4 W1N1 W2N2 W1N4
    Ⅰ/td> W3N2 W1N3 W3N4 W3N1 W3N3 W1N4 W1N2 W1N1 W2N1 W2N4 W2N3 W2N2 CK
    Ⅱ/td> W3N2 CK W3N3 W3N4 W3N1 W1N4 W2N3 W2N1 W1N3 W1N1 W2N2 W2N4 W1N2
    Ⅲ/td> W2N1 W2N2 W1N2 W1N4 W1N1 W3N4 W3N1 W2N3 W2N4 W1N3 W3N2 W3N3 CK
    Ⅳ/td> W2N3 W3N3 W1N2 W2N1 W1N1 W1N4 W2N2 W2N4 W3N2 CK W3N1 W1N3 W3N4
    注:W1、W2、W3代表土壤水势值分别达到−20、−33、−45 kPa时开始灌溉。下同。Notes: W1, W2 and W3 represent that irrigation will start when the soil water potential reaches ?0, ?3 and ?5 kPa, respectively. The same below.
    下载: 导出CSV

    ?nbsp; 3各水肥处理下胸径生长Logistic曲线方程参数

    Table 3.Parameters of logistic curve equation of DBH growth under various water and fertilizer treatments

    年份 Year 处理 Treatment 方程参数 Equation parameter R2
    A1 A2 x0 p
    2017 W1N3 2.998 ± 0.139 6.282 ± 0.252 5.537 ± 0.214 5.818 ± 1.287 0.995
    W1N4 3.006 ± 0.125 5.884 ± 0.257 5.493 ± 0.243 5.803 ± 1.296 0.993
    W3N3 3.041 ± 0.106 6.215 ± 0.310 5.908 ± 0.287 4.643 ± 0.866 0.997
    CK 3.099 ± 0.083 5.724 ± 0.370 6.339 ± 0.437 4.705 ± 1.052 0.995
    2018 W1N3 6.122 ± 0.056 8.791 ± 0.065 5.192 ± 0.070 6.596 ± 0.647 0.998
    W1N4 5.876 ± 0.035 8.685 ± 0.042 5.160 ± 0.042 6.843 ± 0.398 0.999
    W3N3 5.838 ± 0.059 8.579 ± 0.054 5.207 ± 0.064 6.706 ± 0.565 0.999
    CK 5.247 ± 0.049 7.939 ± 0.053 5.136 ± 0.058 6.325 ± 0.474 0.999
    2019 W1N3 8.650 ± 0.065 10.372 ± 0.072 5.215 ± 0.121 6.426 ± 0.985 0.997
    W1N4 8.455 ± 0.055 10.231 ± 0.057 5.152 ± 0.095 7.170 ± 0.954 0.997
    W3N3 8.434 ± 0.064 10.110 ± 0.050 5.226 ± 0.103 6.823 ± 0.938 0.997
    CK 7.751 ± 0.040 9.514 ± 0.043 5.166 ± 0.072 6.755 ± 0.643 0.999
    2020 W1N3 10.295 ± 0.025 11.661 ± 0.025 5.234 ± 0.056 7.261 ± 0.563 0.999
    W1N4 10.173 ± 0.020 11.470 ± 0.016 5.060 ± 0.042 7.614 ± 0.463 0.999
    W3N3 10.061 ± 0.018 11.260 ± 0.012 5.173 ± 0.039 8.294 ± 0.485 0.999
    CK 9.508 ± 0.025 10.811 ± 0.023 5.154 ± 0.057 8.194 ± 0.710 0.999
    下载: 导出CSV

    ?nbsp; 42017?020年胸径增量方差分枏/p>

    Table 4.Variance analysis of DBH increment from 2017 to 2020

    年份Year 变异来源
    Source of variation
    df F 显著?br/>Significance
    2017 区组 Block 4 9.273 < 0.001
    Water (W) 2 4.637 0.015
    Nitrogen (N) 3 3.757 0.017
    W × N 6 0.375 0.891
    2018 区组 Block 4 1.954 0.118
    W 2 0.012 0.988
    N 3 0.56 0.644
    W × N 6 0.579 0.745
    2019 区组 Block 4 1.873 0.132
    W 2 0.279 0.758
    N 3 0.039 0.990
    W × N 6 0.718 0.637
    2020 区组 Block 4 3.254 0.020
    W 2 0.597 0.555
    N 3 1.244 0.305
    W × N 6 0.827 0.556
    下载: 导出CSV

    ?nbsp; 54年的相对增长率方差分枏/p>

    Table 5.Analysis of variance of relative growth rate in 4 years

    年份 Year 变异来源
    Source of variation
    df F 显著?br/>Significance
    2017 区组 Block 4 1.273 0.295
    W 2 4.970 0.011
    N 3 3.499 0.023
    W × N 6 0.247 0.958
    2018 区组 Block 4 11.724 0.000
    W 2 0.899 0.414
    N 3 1.372 0.264
    W × N 6 0.956 0.466
    2019 区组 Block 4 5.490 0.001
    W 2 1.119 0.336
    N 3 0.284 0.836
    W × N 6 0.456 0.837
    2020 区组 Block 4 7.554 0.000
    W 2 0.261 0.771
    N 3 1.819 0.158
    W × N 6 2.223 0.059
    下载: 导出CSV

    ?nbsp; 72017?020年年度蓄积量及生产力

    Table 7.Annual volume and productivity in 2017?020

    处理
    Treatment
    蓄积/(m3·hm?)Volume /(m3·ha?(/td> 平均生产?(m3·hm?·a?(br/>Average productivity/(m3·ha?·year?(/td> 年均生产?
    (m3·hm?·a?(br/>Average annual
    productivity/
    (m3·ha?·year?(/td>
    2017 2018 2019 2020 2017 2018 2019 2020
    W1N1 18.65 ± 2.13a 48.43 ± 3.90a 76.97 ± 5.31a 104.39 ± 5.58a 15.51 ± 1.81a 29.78 ± 1.89a 28.53 ± 2.32a 27.42 ± 1.39a 25.31 ± 1.36a
    W1N2 17.86 ± 2.31abc 45.06 ± 4.45ab 72.26 ± 7.26a 96.35 ± 8.01a 14.60 ± 1.99ab 27.20 ± 2.31ab 27.20 ± 3.43a 24.09 ± 0.86a 23.27 ± 1.94ab
    W1N3 18.20 ± 1.09ab 44.67 ± 2.36abc 70.89 ± 4.76a 98.96 ± 6.94a 15.17 ± 0.92ab 26.47 ± 1.58ab 26.21 ± 2.49a 28.07 ± 2.24a 23.98 ± 1.72a
    W1N4 15.90 ± 2.01abcd 44.14 ± 5.08abc 71.17 ± 9.79a 99.01 ± 12.97a 12.84 ± 1.77ab 28.24 ± 3.14ab 27.03 ± 4.91a 27.24 ± 3.87a 23.84 ± 3.31a
    W2N1 17.85 ± 1.93abc 45.55 ± 3.01ab 72.27 ± 3.57a 96.74 ± 4.58a 14.58 ± 1.57ab 27.70 ± 1.21ab 26.72 ± 1.88a 24.47 ± 2.21a 23.37 ± 1.13ab
    W2N2 13.51 ± 1.94cd 35.94 ± 3.62bc 58.25 ± 5.82a 83.41 ± 8.88a 10.62 ± 1.68ab 22.43 ± 1.88b 22.31 ± 2.34a 25.17 ± 3.15a 20.13 ± 2.17bc
    W2N3 16.75 ± 2.07abcd 44.66 ± 4.68abc 73.15 ± 5.16a 102.60 ± 6.62a 13.51 ± 1.89ab 27.91 ± 2.65ab 28.49 ± 1.12a 29.44 ± 1.75a 24.84 ± 1.61a
    W2N4 15.61 ± 2.34abcd 41.61 ± 5.66abc 70.21 ± 9.34a 95.37 ± 13.04a 12.37 ± 1.99ab 26.00 ± 3.34ab 28.60 ± 3.82a 25.16 ± 3.87a 23.03 ± 3.18abc
    W3N1 17.74 ± 2.57abc 46.04 ± 4.45ab 72.61 ± 5.51a 97.89 ± 5.85a 14.37 ± 2.18ab 28.30 ± 2.04ab 26.57 ± 1.27a 25.27 ± 0.68a 23.63 ± 1.37ab
    W3N2 14.95 ± 1.95abcd 40.47 ± 4.11abc 67.08 ± 6.42a 92.48 ± 7.95a 11.87 ± 1.67ab 25.51 ± 2.17ab 26.61 ± 2.46a 25.41 ± 1.89a 22.35 ± 1.92abc
    W3N3 16.27 ± 1.95abcd 42.18 ± 3.81abc 66.39 ± 4.11a 89.96 ± 4.28a 13.04 ± 1.63ab 25.92 ± 1.87ab 24.21 ± 1.59a 23.57 ± 0.69a 21.68 ± 1.00abc
    W3N4 13.82 ± 2.36bcd 36.22 ± 4.54bc 57.96 ± 5.81a 81.69 ± 6.88a 10.71 ± 1.97ab 22.39 ± 2.26b 21.74 ± 1.90a 23.74 ± 1.42a 19.65 ± 1.64c
    CK 12.51 ± 1.21d 34.29 ± 3.57c 57.52 ± 6.77a 81.46 ± 9.80a 9.29 ± 1.01b 21.78 ± 2.52b 23.23 ± 3.81a 24.54 ± 3.49a 19.71 ± 2.52c
    注:同列不同小写字母表示处理间差异显著(P< 0.05)。Note: different lowercase letters in the same column indicate significant differences between treatments (P< 0.05).
    下载: 导出CSV
  • [2]朱之? 三倍体毛白杨新品种简介[J]. 北京林业大学学报, 2002, 24(增刊1): 60?2.

    Zhu Z T. Brief introduction of new triploid Populus tomentosa[J]. Journal of Beijing Forestry University, 2002, 24(Suppl.1): 60?2. [3]郑世? 对我国杨树集约栽培中存在问题的探讨[J]. 林业实用技? 2007(10): 11?3.

    Zheng S K. Discussion on the problems existing in the intensive cultivation of poplar in China[J]. Forestry Practical Technology, 2007(10): 11?3. [4]Yi X F, Ju M Y. Soil nitrogen assimilation of 1-year oak seedlings: implication for forest fertilization and management[J/OL]. Forest Ecology and Management. 2020, 456: 117703[2020?01?15]. https://doi.org/10.1016/j.foreco.2019.117703. [5]罗盼? 长期水氮耦合对毛白杨蓄积量及林地土壤化学性质的影响[D]. 北京: 北京林业大学, 2013.

    Luo P P. Coupling effect of long-term water and nitrogen fertilizer on the stand volume of Populus tomentosaand chemical properties of soil[D]. Beijing: Beijing Forestry University, 2013. [6]Shock C C, Feibert E B G, Majid S, et al. Water requirements and growth of irrigated hybrid poplar in a semi-arid environment in eastern Oregon[J]. Western Journal of Applied Forestry, 2009(1): 46?3. [7]贾黎? 邢长? 李景? ? 地下滴灌条件下杨树速生丰产林生产力及效益分析[J]. 北京林业大学学报, 2005, 27(6): 43?9.

    Jia L M, Xing C S, Li J R, et al. Productivity and benefit analysis of fast-growing and high-yield plantations of poplar under subsurface drip irrigation[J]. Journal of Beijing Forestry University, 2005, 27(6): 43?9. [8]Xi B Y, Li G D, Bloomberg M, et al. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosain the North China Plain[J]. Australian Forestry, 2014, 77(3?): 159?67. doi:10.1080/00049158.2014.920552 [9]司婧, 贾黎? 韦艳? ? 地下滴灌对杨树速生丰产林碳储量的影响[J]. 北京林业大学学报, 2012, 34(1): 14?8.

    Si J, Jia L M, Wei Y K, et al. Carbon storage in fast-growing and high-yield poplar plantations under subsurface drip irrigation[J]. Journal of Beijing Forestry University, 2012, 34(1): 14?8. [10]潘晓? 武继? 水肥耦合效应研究的现状与前景[J]. 河南农业科学, 2011, 40(10): 20?3.

    Pan X Y, Wu J C. Current situation and prospects of water and fertilizer coupling effects[J]. Journal of Henan Agriculture Sciences, 2011, 40(10): 20?3. [11]方升? 中国杨树人工林培育技术研究进展[J]. 应用生态学? 2008, 10(19): 2307?316.

    Fang S Z. Silviculture of poplar plantation in China[J]. Chinese Journal of Applied Ecology, 2008, 10(19): 2307?316. [12]Coyle D R, Coleman M D. Forest production responses to irrigation and fertilization are not explained by shifts in allocation[J]. Forest Ecology and Management, 2005, 208(1?): 137?52. doi:10.1016/j.foreco.2004.11.022 [13]贺勇, 兰再? 孙尚? ? 地面滴灌?07 杨幼林生长和水肥利用的影响[J]. 东北林业大学学报, 2015, 43(11): 37?1.

    He Y, Lan Z P, Sun S W, et al. Effect of drip irrigation on the growth and use efficiency of water and fertilizer of young ?07 poplar plantation[J]. Journal of Northeast Forestry University, 2015, 43(11): 37?1. [14]Khamzina A, Lamers J P A, Vlek P L G. Tree establishment under deficit irrigation on degraded agricultural land in the lower Amu Darya River region, Aral Sea Basin[J]. Forest Ecology and Management, 2008, 255(1): 168?78. doi:10.1016/j.foreco.2007.09.005 [15]傅建? 兰再? 孙尚? ? 滴灌条件下杨树人工林土壤的水分运移[J]. 林业科学, 2013, 49(6): 25?9.

    Fu J P, Lan Z P, Sun S W, et al. Soil water movement in a poplar plantation under drip irrigation[J]. Scientia Silvae Sinicae, 2013, 49(6): 25?9. [16]王若? 康跃? 万书? ? 盐碱地滴灌对新疆杨生长及土壤盐分分布影响[J]. 灌溉排水学报, 2012, 31(5): 1?.

    Wang R S, Kang Y H, Wan S Q, et al. Effects of drip irrigation on growth and soil salt distribution of poplar in saline alkali soil[J]. Journal of Irrigation and Drainage, 2012, 31(5): 1?. [17]席本? 王烨, 贾黎? 滴灌施肥下施氮量和施氮频率对毛白杨生物量及氮吸收的影响[J]. 林业科学, 2017, 53(5): 63?3.

    Xi B Y, Wang Y, Jia L M. Effects of nitrogen application rate and frequency on biomass accumulation and nitrogen uptake of Populus tomentosaunder drip fertigation[J]. Scientia Silvae Sinicae, 2017, 53(5): 63?3. [18]李应? 杨玉? 宁夏石中高速公路中分带侧柏节水灌溉制度试验研究[J]. 农业科学研究, 2009, 30(4): 30?2.

    Li Y H, Yang Y Y. Experimental study on water-saving irrigation system of Platycladus orientalisin Shizhong Expressway in Ningxia[J]. Journal of Agricultural Sciences, 2009, 30(4): 30?2. [19]陈培? 杨倩? 侯金? ? 探究水肥调控对刺槐人工林生长的影响[J]. 农业与技? 2019, 39(9): 84?6.

    Chen P P, Yang Q Q, Hou J B, et al. To explore the effect of water and fertilizer regulation on the growth of Robinia pseudoacaciaplantation[J]. Agriculture and Technology, 2019, 39(9): 84?6. [20]战国? 地下滴灌推广应用中存在的问题及建议[J]. 农业与技? 2017, 37(10): 71?2.

    Zhan G L. Problems and suggestions in the popularization and application of underground drip irrigation[J]. Agriculture and Technology, 2017, 37(10): 71?2. [21]贺曰? 王烨, 张宏? ? 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的 响[J]. 农业工程学报, 2018, 34(20): 90?8.

    He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young Populus tomentosaplantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 90?8. [22]于景? 刘峰, 贺曰? ? 沟灌水氮耦合对毛白杨林木生长及水氮吸收利用的影响[J]. 应用生态学? 2020, 31(7): 2314?322.

    Yu J L, Liu F, He Y L, et al. Effects of water and nitrogen coupling under furrow irrigation on tree growth, absorption and utilization of water and nitrogen of Populus tomentosa[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2314?322. [23]秦杏? 吕馥? 彭晶? ? 滴灌与沟灌栽培杨树人工林土壤水分动态与生产力[J]. 应用生态学? 2020, 31(5): 1535?542.

    Qin X Y, Lü F L, Peng J J, et al. Soil moisture dynamics and productivity of poplar plantations under drip and furrow irrigation managements[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1535?542. [24]刘峰, 席本? 戴腾? ? 水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响[J]. 北京林业大学学报, 2020, 42(1): 75?3.

    Liu F, Xi B Y, Dai T F, et al. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75?3. [25]王烨. 毛白杨速生纸浆林地下滴灌施肥效应研究[D]. 北京: 北京林业大学, 2015.

    Wang Y. Research on effects of nitrogen fertigation on tree-growth and its mechanisms of action in Populus tomentosaplantation[D]. Beijing: Beijing Forestry University, 2015. [26]Coleman M D, Friend A L, Kern C C. Carbon allocation and nitrogen acquisition in a developing Populus deltoidesplantation[J]. Tree Physiology, 2004, 24(12): 1347?357. doi:10.1093/treephys/24.12.1347 [27]Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosaplantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243?54. doi:10.1016/j.agwat.2016.06.017 [28]陈章? 杨树二元立木材积表的编制[J]. 林业科学研究, 1989, 2(1): 82?7.

    Chen Z S. Compilation of poplar’s binary standing timber volume table[J]. Forestry Science Research, 1989, 2(1): 82?7. [29]Jang W, Eskelson B N I, de Montigny L, et al. Stand growth responses after fertilization for thinned lodgepole pine, Douglas-fir, and spruce in forests of interior British Columbia, Canada[J]. Canadian Journal of Forest Research, 2019, 49(11): 1471?482. doi:10.1139/cjfr-2019-0188 [30]刘占? 梁凤? 朱万? 天然白桦林苗高生长模型[J]. 林业科技情报, 2014, 46(2): 32?3.

    Liu Z H, Liang F S, Zhu W C. Tree height growth model of natural birch forest[J]. Forestry Science and Technology Information, 2014, 46(2): 32?3. [31]宋淑? 顾宸? 李春? ? 应用曲线模型解析施肥对白桦苗期年高生长节律的影响[J]. 东北林业大学学报, 2021, 49(4): 17?3.

    Song S Y, Gu H R, Li C X, et al. Fertilization effect on annual growth rhythm of Betula platyphyllausing logistic growth model[J]. Journal of Northeast Forestry University, 2021, 49(4): 17?3. [32]秦光? 姜岳? 李善? ? 黑杨派新无性系苗期生长模型及灰色关联分析[J]. 北京林业大学学报, 2004, 26(2): 52?7.

    Qin G H, Jiang Y Z, Li S W, et al. Growth models of Sect. Aigeiros in Populusat nursery stage and its gray correlation analyses[J]. Journal of Beijing Forestry University, 2004, 26(2): 52?7. [33]Ahmeda K M, Jiang L, Wang F, et al. Variation analysis of growth traits of four poplar clones under different water and fertilizer management[J]. Journal of Forestry Research, 2019, 31(4): 45?5. [34]Yang F, Feng Z, Wang H, et al. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations[J]. Agricultural and Forest Meteorology, 2017, 234: 106?14. [35]Graeme L B, Clawson R G, Terrell B. Response of three hardwood species to irrigation and fertilization on an upland site[J]. Southern Journal of Applied Forestry, 1997(3): 123?29. [36]Adams P R, Beadle C L, Mendham N J, et al. The impact of timing and duration of grass control on growth of a young Eucalyptus globulusLabill. plantation[J]. New Forests, 2003, 26(2): 147?65. doi:10.1023/A:1024490707175 [37]Farhadi E, Daneshyan J, Hamidi A, et al. Evaluation of irrigation intervals and nitrogen fertilizer rates on some seed qualitative characteristics of hybrid corn( Zea maysL.) cv. single cross 704[J]. Bulletin of Environment, Pharmacology and Life Sciences, 2014: 139?45. [38]Dong W Y, Qin J, Li J Y, et al. Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar ( Populus tomentosaCarr.) seedlings[J]. Soil Science and Plant Nutrition, 2011, 57(2): 303?12. doi:10.1080/00380768.2010.549445 [39]Kang M, Zhang Z, Noormets A, et al. Energy partitioning and surface resistance of a poplar plantation in northern China[J]. Biogeosciences, 2015, 12(14): 4245?259. doi:10.5194/bg-12-4245-2015 [40]秘洪? 杨树人工林对滴灌施肥的生长及生理响应研究[D]. 北京: 中国林业科学研究? 2017.

    Bi H L. Study on growth and physiological responses of poplar plantation to drip fertigation[D]. Beijing: Chinese Academy of Forestry, 2017. [41]Jiang L, Tian D, Ma S, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest[J]. Science of the Total Environment, 2018, 618: 1064?070. doi:10.1016/j.scitotenv.2017.09.099 [42]Amichev B Y, van Rees K C J. Early nitrogen fertilization effects on 13 years of growth of 4 hybrid poplars in Saskatchewan, Canada[J]. Forest Ecology and Management, 2018, 419: 110?22. [43]He Y L, Xi B Y, Li G D, et al. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar ( Populus tomentosa) plantations[J/OL]. Agricultural Water Management, 2021, 243: 106460[2020?11?21]. https://doi.org/10.1016/j.agwat.2020.106460. [44]Wang T, Zhou D, Wang P, et al. Size-dependent reproductive effort in Amaranthus retroflexus: the influence of planting density and sowing date[J]. Botany, 2006, 84(3): 485?92. [45]殷鸣? 薛娟, 宁良? ? 基于近自然林业经营的不同密度林木竞争关系比较分析[J]. 西北林学院学? 2013, 28(5): 149?53.

    Yin M F, Xue J, Ning L Z, et al. Comparative study on competition relationship of the forests with different densities based on near-nature forestry management[J]. Journal of Northwest Forestry University, 2013, 28(5): 149?53. [46]闫小? 欧美108杨速生丰产林水氮耦合效应研究[D]. 北京: 北京林业大学, 2016.

    Yan X L. Research on coupling effects of water and nitrogen in fast-growing and high-yield poplar plantation[D]. Beijing: Beijing Forestry University, 2016. [47]朱嘉? 薄慧? 李璇, ? 不同毛白杨无性系林分蓄积量的长期水氮耦合效应[J]. 林业科学, 2019, 55(5): 27?5.

    Zhu J L, Bo H J, Li X, et al. Long term water-nitrogen coupling effect on stand volume of different clones of Populus tomentosa[J]. Scientia Silvae Sinicae, 2019, 55(5): 27?5. [48]马蒙? 林青, 徐绍? 不同因素影响下层状土壤水分入渗特征及水力学参数估计[J]. 土壤学报, 2020, 57(2): 347?58.

    Ma M M, Lin Q, Xu S H. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica, 2020, 57(2): 347?58. [49]Liu H, Lei T W, Zhao J, et al. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method[J]. Journal of Hydrology, 2011, 396(1/2): 24?2. [50]任忠秀, 聂立? 张志? ? 水氮耦合效应对毛白杨无性系人工林林分蓄积量与经济效益的影响[J]. 北京林业大学学报, 2012, 34(1): 25?1.

    Ren Z X, Nie L S, Zhang Z Y, et al. Coupling effects of water and nitrogen on the stand volume and economic benefit of Populus tomentosaclone plantation[J]. Journal of Beijing Forestry University, 2012, 34(1): 25?1.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?3)/ ?6)
    计量
    • 文章访问?88
    • HTML全文浏览野36
    • PDF下载野26
    • 被引次数:0
    出版历程
    • 收稿日期:2021-11-15
    • 录用日期:2023-02-20
    • 修回日期:2021-12-20
    • 网络出版日期:2023-02-22
    • 刊出日期:2023-03-25

    目录

      Baidu
      map