留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

枢i>CML基因的分子特征及其抗寒性表达模式分枏/p>

高梦娆/a>,王林霝/a>,罗智,赵若?/a>,刘志囼/a>,刘平,刘孟冚/a>,王立?/a>

downloadPDF
高梦? 王林? 罗智, 赵若? 刘志? 刘平, 刘孟? 王立? 枣CML基因的分子特征及其抗寒性表达模式分析[J]. 北京林业大学学报, 2023, 45(3): 58-67. doi: 10.12171/j.1000-1522.20210334
引用本文: 高梦? 王林? 罗智, 赵若? 刘志? 刘平, 刘孟? 王立? 枢i>CML基因的分子特征及其抗寒性表达模式分析[J]. 北京林业大学学报, 2023, 45(3): 58-67.doi:10.12171/j.1000-1522.20210334
Gao Mengjiao, Wang Linxia, Luo Zhi, Zhao Ruoyu, Liu Zhiguo, Liu Ping, Liu Mengjun, Wang Lixin. Molecular characteristics of CML genes in Chinese jujube and their expression patterns in resistance to cold stress[J]. Journal of Beijing Forestry University, 2023, 45(3): 58-67. doi: 10.12171/j.1000-1522.20210334
Citation: Gao Mengjiao, Wang Linxia, Luo Zhi, Zhao Ruoyu, Liu Zhiguo, Liu Ping, Liu Mengjun, Wang Lixin. Molecular characteristics ofCMLgenes in Chinese jujube and their expression patterns in resistance to cold stress[J].Journal of Beijing Forestry University, 2023, 45(3): 58-67.doi:10.12171/j.1000-1522.20210334
doi:10.12171/j.1000-1522.20210334
基金项目:国家自然科学基金青年科学基金项目?2201594),河北省教育厅科学技术研究项目(QN2022017),河北省省属高校基本科研业务费研究项目(KY2021059),河北省引进留学人员资助项目(C20210114),国家重点研发计划课题?019YFD1001605)、/div>
详细信息
    作者简今

    高梦娇。主要研究方向:枣树逆境生理与分子生物技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:mjgaomengjiao@163.com">mjgaomengjiao@163.com 地址?71000 河北省保定市莲池区乐凯南大街2596号河北农业大学西校区

    责任作耄

    王立新,博士,讲师。主要研究方向:枣树逆境生理与分子生物技术。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:wanglxht@163.com">wanglxht@163.com 地址:同三/span>

  • 中图分类叶S722.3+6;S665.1

Molecular characteristics ofCMLgenes in Chinese jujube and their expression patterns in resistance to cold stress

  • 摘要: 目的探究枣类钙调蛋白(ZjCML)在抗寒性中的重要作用,旨在挖掘关键抗寒 ZjCML基因,为进一步利用其进行枣抗寒育种提供理论参考、/sec> 方法本研究利用生物信息学技术,全面分析了枣 CML基因家族成员的数目及相关结构特征,并利用RNA-seq和实时荧光定量PCR技术分析其响应低温胁迫时的表达模式,为筛选关键抗寒基因奠定基础、/sec> 结果在枣基因组数据中共鉴定到23?i>ZjCML基因,不均匀地分布在12条染色体上。与拟南芥CMLs蛋白构建进化树分析发现ZjCMLs可被分为12个类群。蛋白网络互作预测发?6个ZjCMLs存在于该网络中,且具有一定的互作关系。RNA-seq结果表明 ZjCML13咋i>ZjCML6基因表达模式在‘冬枣’及其同源四倍体响应低温胁迫中具有显著差异,其中 ZjCML13在‘冬枣’响应低温胁??4 h时极显著上调表达,而在‘冬枣’同源四倍体中表达差异不显著。外源CaCl 2和褪黑素处理后, ZjCML13在‘冬枣’同源四倍体响应低温胁迫6?4 h时极显著上调表达,说明其可能通过诱导 ZjCML13表达调控‘冬枣’同源四倍体抗寒性、/sec> 结论枢i>CML基因家族具有特定的结构特征及响应低温胁迫+i>ZjCML13可能在调控‘冬枣’及其同源四倍体抗寒性差异中发挥重要作用、/sec>

  • ?nbsp; 1枢i>CML基因在染色体上的定位

    Figure 1.Position ofCMLgenes on the chromosomes of Chinese jujube

    ?nbsp; 2枣CML的保守基序分枏/p>

    Figure 2.Analysis of the conserved motifs of CMLs in Chinese jujube

    ?nbsp; 3枢i>CML家族基因结构

    Figure 3.Gene structure ofCMLfamily in Chinese jujube

    ?nbsp; 4枣和拟南芥CML蛋白系统进化栐/p>

    Figure 4.Phylogenetic tree of CML protein in Chinese jujube andArabidopsis thaliana

    ?nbsp; 5枣CML蛋白网络互作预测分析

    Figure 5.Putative interaction network of CML protein in Chinese jujube

    ?nbsp; 6ZjCML基因在‘冬枣’及其同源四倍体响应低温胁迫时的RNA-seq热图

    Figure 6.Heat map ofZjCMLs expressing profiles in response to cold stress between ‘Dongzao and its autotetraploids from RNA-seq data

    ?nbsp; 7ZjCML6咋i>ZjCML13基因在‘冬枣’及其同源四倍体中响应低温胁迫时qRT-PCR表达模式分析

    *表示?i>P< 0.05水平上有显著性差异;**表示?i>P< 0.01水平上有极显著性差异。下同? represents significant difference atP< 0.05 level; ** represents extremely significant difference atP< 0.01 level. The same below.

    Figure 7.Expression profiles in response to cold stress between ‘Dongzao and its autotetraploids from qRT-PCR test ofZjCML6 andZjCML13

    ?nbsp; 8ZjCML家族基因在CaCl2和褪黑素处理冬枣四倍体后响应低温胁迫时的相对表达量分析

    Figure 8.Relative expression levels of some CML genes in tetraploid of ‘Dongzao in response to cold stress under CaCl2and melatonin treatments

    ?nbsp; 2枢i>CML基因家族基本信息

    Table 2.Basic information ofCMLgene family in Chinese jujube

    基因名称
    Gene name
    基因登录叶br/>Gene ID 染色佒br/>定位
    Chromosome
    location
    基因练br/>全长
    Genomic total
    length/bp
    CDS长度
    CDS
    length/bp
    EF-hand
    数目
    Number of
    EF-hand
    氨基酸数野br/>Number
    of amino
    acid/aa
    分子野br/>Molecular
    mass/
    kDa
    等电炸br/>Isoelectric
    point
    亚细胞定佌br/>Subcellular location
    ZjCML1 LOC107420771 1 962 444 3 147 16.52 4.73 细胞膜、液泠br/>Cell membrane and vacuole
    ZjCML2 LOC107417331 1 1 325 582 3 193 21.71 5.17 细胞
    Cell nucleus
    ZjCML3 LOC107409684 2 1 250 777 3 258 28.86 6.16 细胞膜、细胞核
    Cell membrane and nucleus
    ZjCML4 LOC107413144 3 846 483 3 160 18.10 4.12 细胞膜、细胞质
    Cell membrane and cytoplasm
    ZjCML5 LOC107415541 4 1 014 642 2 213 24.62 4.72 细胞膛br/>Cell membrane
    ZjCML6 LOC107416249 4 562 459 4 152 16.68 4.80 液泡
    Vacuole
    ZjCML7 LOC107416258 4 667 255 2 84 93.44 4.45 细胞膛br/>Cell membrane
    ZjCML8 LOC107418957 5 782 486 4 161 17.45 4.14 液泡
    Vacuole
    ZjCML9 LOC107421107 6 1 158 507 3 168 19.01 4.33 细胞膛br/>Cell membrane
    ZjCML10 LOC107422102 7 1 214 729 5 242 27.62 4.93 细胞膛br/>Cell membrane
    ZjCML11 LOC107423403 7 952 450 4 149 16.84 4.11 细胞膜、细胞质
    Cell membrane and cytoplasm
    ZjCML12 LOC107424787 8 889 516 4 171 19.44 4.88 细胞膛br/>Cell membrane
    ZjCML13 LOC107424831 8 856 573 3 190 21.34 4.82 细胞膛br/>Cell membrane
    ZjCML14 LOC107425895 9 887 447 4 148 16.77 4.07 细胞膜、细胞质
    Cell membrane and cytoplasm
    ZjCML15 LOC107427067 9 1 294 561 4 186 21.34 6.62 细胞膛br/>Cell membrane
    ZjCML16 LOC107427847 9 580 423 4 140 15.56 4.30 细胞膛br/>Cell membrane
    ZjCML17 LOC107429242 10 1 224 606 4 201 22.19 4.50 细胞膛br/>Cell membrane
    ZjCML18 LOC107429541 10 721 480 4 159 17.65 4.34 液泡
    Vacuole
    ZjCML19 LOC107431195 11 1 286 492 4 163 18.02 4.57 液泡
    Vacuole
    ZjCML20 LOC107431392 11 1 219 645 3 214 23.89 4.34 细胞膛br/>Cell membrane
    ZjCML21 LOC107431644 12 1 192 693 3 230 25.22 4.74 细胞样br/>Cell nucleus
    ZjCML22 LOC107431634 12 1 166 807 3 268 29.24 6.59 细胞样br/>Cell nucleus
    ZjCML23 LOC107434111 930 507 4 168 18.60 4.37 液泡
    Vacuole
    下载: 导出CSV
  • [2]Wang L X, Sadeghnezhad E, Nick P. Upstream of gene expression: what is the role of microtubules in cold signalling?[J]. Journal of Experimental Botany, 2019, 71(1): 36?8. [3]Mohanta T K, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants[J]. BMC Plant Biology, 2017, 17(1): 38. doi:10.1186/s12870-017-0989-3 [4]曹绍? 王艳? 苏婉? ? 类钙调蛋白在植物生长发育及逆境胁迫中的功能研究进展[J]. 植物生理学报, 2018, 54(10): 1517?526.

    Cao S Y, Wang Y F, Su W Y, et al. Advances in the function of calmodulin-like proteins in plant growth and development and under stress[J]. Journal of Plant Physiology, 2018, 54(10): 1517?526. [5]Andrews C, Xu Y T, Kirberger M, et al. Structural aspects and prediction of calmodulin-binding proteins[J]. International Journal of Molecular Sciences, 2020, 22(1): 308. doi:10.3390/ijms22010308 [6]王艳, 尹静, 马泓? ? 钙离子在介导SA诱导白桦悬浮细胞三萜合成途径中的作用[J]. 北京林业大学学报, 2014, 36(2): 51?8.

    Wang Y, Yin J, Ma H S, et al. Role of calcium ion in mediating the triterpenoid synthesis induced by SA in suspension cells of Betula platyphylla[J]. Journal of Beijing Forestry University, 2014, 36(2): 51?8. [7]McCormack M, Tsai Y C, Braam J. Handling calcium signaling: ArabidopsisCaMs and CMLs[J]. Trends in Plant Science, 2005, 10(8): 383?89. doi:10.1016/j.tplants.2005.07.001 [8]杨俊. OsCaM1-1咋i>OsCML16调控水稻耐逆性机制的研究[D]. 武汉: 华中农业大学, 2018.

    Yang J. Studies on the mechanisms of OsCAM1-1 and OSCML16 in regulation of stress tolerance in rice[D]. Wuhan: Huazhong Agricultural University, 2018. [9]Munir S, Khan M R G, Song J, et al. Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato ( Solanum lycopersicum)[J]. Plant Physiology & Biochemistry, 2016, 102: 167?79. [10]陈超, 端木慧子, 朱丹, ? 大豆CML家族基因的生物信息学分析[J]. 大豆科学, 2015, 34(6): 957?63.

    Chen C, Duan M H Z, Zhu D, et al. Bioinformatics analysis of CML family genes in soybean [J]. Soybean Science, 2015, 34(6): 957?63. [11]Nie S S, Zhang M J, Zhang L G. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage ( Brassica rapaL. ssp. p ekinensis)[J]. BMC Genomics, 2017, 18(1): 842. doi:10.1186/s12864-017-4240-2 [12]杨前? 王涛, 梁立? ? 两种兰科植物CaM及CML基因家族全基因组分析[J]. 林业科学研究, 2018, 31(6): 18?8.

    Yang Q Y, Wang T, Liang L X, et al. Genome-wide analysis of CaM /CML gene family in two orchidaceae species[J]. Forest Research, 2018, 31(6): 18?8. [13]罗澜, 司修? 孙蕾, ? 甜瓜CML基因家族的鉴定与表达特性分析[J]. 分子植物育种, 2021, 19(24): 8081-8094.

    Luo L, Si X Y, Sun L, et al. Identification and expression characteristic analysis of CML gene family of Melon[J]. Molecular Plant Breeding, 2021, 19(24): 8081?094. [14]Wu X M, Qiao Z, Liu H P, et al. CML20, an Arabidopsiscalmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance[J]. Frontiers in Plant Science, 2017, 8: 824. doi:10.3389/fpls.2017.00824 [15]Magnan F, Ranty B, Charpenteau M, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal: For Cell and Molecular Biology, 2008, 56(4): 575?89. doi:10.1111/j.1365-313X.2008.03622.x [16]Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca 2 +sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiology, 2005, 139(1): 240?53. doi:10.1104/pp.105.062612 [17]Yang J, Liu S, Ji L X, et al. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice[J]. Journal of Plant Physiology, 2020, 249: 153165. doi:10.1016/j.jplph.2020.153165 [18]Ma Q Q, Zhou Q Q, Chen C M, et al. Isolation and expression analysis of CsCMLgenes in response to abiotic stresses in the tea plant ( Camellia sinensis)[J]. Scientific Reports, 2019, 9(1): 1?. doi:10.1038/s41598-018-37186-2 [19]Aleynova O A, Kiselev K V, Ogneva Z V, et al. The grapevine Calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. International Journal of Molecular Sciences, 2020, 21(21): 7939. doi:10.3390/ijms21217939 [20]曲泽? 王永? 中国果树志·枣卷[M]. 北京: 中国林业出版? 1993.

    Qu Z Z, Wang Y H. Chinese fruit and jujube rolls [M]. Beijing: China Forestry Publishing House, 1993. [21]董梦? 杨植, 王振? ? 应用灰色关联度法综合评价8个枣品种抗寒性[J]. 塔里木大学学? 2021, 33(1): 28?7.

    Dong M Y, Yang Z, Wang Z L, et al. Comprehensive evaluation of cold resistance of 8 jujube varieties by grey correlation method[J]. Journal of Tarim University, 2021, 33(1): 28?7. [22]Wang L H, Luo Z, Wang L L, et al. Morphological, cytological and nutritional changes of autotetraploid compared to its diploid counterpart in Chinese jujube ( Ziziphus jujubaMill.)[J]. Scientia Horticulturae, 2019, 249: 263?70. doi:10.1016/j.scienta.2019.01.063 [23]吕义? 梁楠? 宋婷? ? 水曲柲i>FmPIF基因家族克隆及表达模式分析[J]. 北京林业大学学报, 2022, 44(1): 58?8.

    Lü Y P, Liang N S, Song T T, et al. Cloning and expression pattern analysis of FmPIFgene family in Fraxinus mandshurica[J]. Journal of Beijing Forestry University, 2022, 44(1): 58?8. [24]Chen C J, Chen H, Zhang Y, et al. Tbtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 702. [25]王雪? 顾咏? 张雪? ? 杨树HSF家族基因生物信息学与胁迫应答表达分析[J]. 北京林业大学学报, 2021, 43(2): 34?5.

    Wang X Y, Gu Y M, Zhang X M, et al. Bioinformatics and stress response expression analysis of poplar HSF family genes[J]. Journal of Beijing Forestry University, 2021, 43(2): 34?5. [26]Gao M J, Wang L H, Li M, et al. Physiological and transcriptome analysis accentuates microtubules and calcium signaling in Ziziphus jujubaMill ‘Dongzao autotetraploids with sensitive cold tolerance[J]. Scientia Horticulturae, 2021, 285: 110183. [27]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method[J]. Methods, 2001, 25(4): 402?08. doi:10.1006/meth.2001.1262 [28]Alistair M H, Colin B. The generation of Ca 2+signals in plants[J]. Annual Review of Plant Biology, 2004, 55: 401?27. [29]McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003, 159(3): 585?98. [30]Wang L X, Li M, Liu Z G, et al. Genome-wide identification of CNGC genes in Chinese jujube ( Ziziphus jujubaMill. ) and ZjCNGC2 mediated signalling cascades in response to cold stress[J]. BMC Genomics, 2020, 21(1): 191. doi:10.1186/s12864-020-6601-5 [31]王超? 朱强? 崔浩? ? 西瓜CDPK基因家族鉴定与特征分析[J]. 北方园艺, 2018(17): 1?.

    Wang C N, Zhu Q L, Cui H N, et al. Identifcation and characteristic analysis of CDPK gene family[J]. Northern Horticulture, 2018(17): 1?. [32]Ali G S, Reddy V S, Lindgren P B, et al. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses[J]. Plant Molecular Biology, 2003, 51(6): 803?15. doi:10.1023/A:1023001403794 [33]Liu H T, Li B, Shang Z L, et al. Calmodulin is involved in heat shock signal transduction in wheat[J]. Plant Physiology, 2003, 132(3): 1186?195. doi:10.1104/pp.102.018564 [34]Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calmodulin-like proteins in plant calcium signaling[J]. Biochimie, 2011, 93(12): 2048?053. doi:10.1016/j.biochi.2011.07.012 [35]Shi J Y, Du X G. Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii[J]. Scientific Reports, 2020, 10(1): 7474. doi:10.1038/s41598-020-64178-y [36]Chu M X, Li J J, Zhang J Y, et al. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsisin a CBF-independent manner[J]. Journal of Experimental Botany, 2018, 68(21): 5241?253. [37]李利? 外源5-氨基乙酰丙酸和CaCl 2对辣椒耐低温弱光能力的影响[D]. 重庆: 西南大学, 2013.

    Li L L. Effect on enhancing anti-chilling and low light stress of ALA and CaCl 2on papper seedlings [D]. Chongqing: Southwest University, 2013. [38]王斌, 林芳? 李丹, ? 印度梨形孢和CaCl 2对香蕉抗寒性的影响[J]. 福建农林大学学报(自然科学?, 2021, 50(6): 753?58.

    Wang B, Lin F K, Li D, et al. Effects of Piriformospora indicaand CaCl 2treatments on cold resistance of banana[J]. Journal of Fujian Agriculture and Forestry University (Nature Science Edition), 2021, 50(6): 753?58. [39]Wang Y, Guo D D, Wang J C, et al. Exogenous melatonin alleviates NO 2damage in tobacco leaves by promoting antioxidant defense, modulating redox homeostasis, and signal transduction[J]. Journal of Hazardous Materials, 2022, 424: 127265.1?27265.16. doi:10.1016/j.jhazmat.2021.127265 [40]张俊? 马丽, 吴姝? ? 外源褪黑素对软枣猕猴桃低温伤害的缓解效应[J]. 植物生理学报, 2020, 56(5): 1081?087.

    Zhang J K, Ma L, Wu S Q, et al. Alleviation effect of exogenous melatonin on low temperature injury of Actinidia arguta[J]. Plant Physiology Journal, 2020, 56(5): 1081?087. [41]杨秀, 许艳? 杨芳? ? 棉花CML基因家族成员鉴定与功能分析[J]. 棉花学报, 2019, 31(4): 307?18.

    Yang X, Xu Y C, Yang F F, et al. Identification and functional analysis of CML gene family in cotton[J]. Cotton Science, 2019, 31(4): 307?18.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?8)/ ?2)
    计量
    • 文章访问?225
    • HTML全文浏览野79
    • PDF下载野61
    • 被引次数:0
    出版历程
    • 收稿日期:2021-08-28
    • 修回日期:2021-10-22
    • 录用日期:2023-01-13
    • 网络出版日期:2023-01-14
    • 刊出日期:2023-03-25

    目录

      Baidu
      map