留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

油橄榄Ⅲ类过氧化物酶家族的进化和表达分析

薛丽,刘晓霝/a>,王晨吇/a>,张建囼/a>,饶国栊/a>

downloadPDF
薛丽, 刘晓? 王晨? 张建? 饶国? 油橄榄Ⅲ类过氧化物酶家族的进化和表达分析[J]. 北京林业大学学报, 2023, 45(4): 36-49. doi: 10.12171/j.1000-1522.20210291
引用本文: 薛丽, 刘晓? 王晨? 张建? 饶国? 油橄榄Ⅲ类过氧化物酶家族的进化和表达分析[J]. 北京林业大学学报, 2023, 45(4): 36-49.doi:10.12171/j.1000-1522.20210291
Xue Li, Liu Xiaoxia, Wang Chenhe, Zhang Jianguo, Rao Guodong. Evolution and expression analysis of the class peroxidase family in olive[J]. Journal of Beijing Forestry University, 2023, 45(4): 36-49. doi: 10.12171/j.1000-1522.20210291
Citation: Xue Li, Liu Xiaoxia, Wang Chenhe, Zhang Jianguo, Rao Guodong. Evolution and expression analysis of the class peroxidase family in olive[J].Journal of Beijing Forestry University, 2023, 45(4): 36-49.doi:10.12171/j.1000-1522.20210291
doi:10.12171/j.1000-1522.20210291
基金项目:中央级公益性科研院所专项(CAFYBB2021QC001(/div>
详细信息
    作者简今

    薛丽。主要研究方向:林木遗传育种。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:xueli8762@163.com">xueli8762@163.com 地址?00091北京市海淀区香山路东小?号中国林科院林业所

    责任作耄

    饶国栋,博士,研究员。主要研究方向:林木遗传育种。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:rgd@caf.ac.cn">rgd@caf.ac.cn 地址:同三/span>

  • 中图分类叶S718.46;S565.7

Evolution and expression analysis of the class peroxidase family in olive

  • 摘要: 目的Ⅲ类过氧化物酶(PRX)是一类植物特有的氧化还原酶,在植物生长发育和胁迫响应方面具有十分重要的作用。本研究拟探讨油橄榄Ⅲ类 PRX基因家族的进化和表达模式,旨在为油橄榄分子育种提供参考、/sec> 方法利用生物信息学方法鉴定并分析了油橄榄Ⅲ类 PRX基因家族的系统发育关系、分组、染色体分布、复制基因、基序分布、基因结构图、顺式作用元件分布和在不同组织和不同非生物胁迫下的表达,并对部分成员基因进行了实时荧光定量PCR验证、/sec> 结果?)鉴定得到了106?i>OePRX基因,根据其与拟南芥和毛果杨PRX蛋白序列的系统进化关系分为了14个组。(2(i>OePRX基因不均匀地分布于23条染色体上;片段复制是该基因家族扩张的主要动力,且复制基因在进化过程中受到了较强的纯化选择;与拟南芥相比,油橄榃i>PRX基因与毛果杨 PRX基因的亲缘关系更近。(3)同一组中OePRX蛋白的等电点、分子量、基序分布、基因结构、信号肽分布、在不同组织中的表达模式均比较保守; OePRX基因启动子中含有较多的生长发育元件和激素应答元件;在油橄榄干热胁迫和水涝胁迫下?8%皃i>OePRX基因显著差异表达、/sec> 结论油橄榃i>OePRX基因家族明显的进化扩张和多变的表达模式暗示了其功能的复杂性,尤其是复制基因的新功能化对油橄榄在地中海地区的广泛分布具有十分重要的适应性意义、/sec>

  • ?nbsp; 1油橄榄、毛果杨和拟南芥Ⅲ类PRX蛋白的系统进化关糺/p>

    Figure 1.Phylogeny of class PRX proteins from olive, black cottonwood andArabidopsis thaliana

    ?nbsp; 2Ⅲ类油橄榃i>PRX基因在染色体上的分布国/p>

    串联复制基因簇用方框标记。Tandem replication gene cluster is marked with a box.

    Figure 2.Chromosomal distribution ofPRXgenes in class olive

    ?nbsp; 3油橄榄Ⅲ籺i>PRX的共线性分枏/p>

    Figure 3.Collinearity analysis of olive type PRXgenes

    ?nbsp; 4油橄榄、毛果杨和拟南芥Ⅲ类PRX的共线性分枏/p>

    Figure 4.Collinearity analysis of class PRXin olive, black cottonwood andArabidopsis thaliana

    ?nbsp; 5油橄榄Ⅲ类PRX各复制基因对的Ka、Ks分析

    Ka. 非同义替换;Ks. 同义替换;Oe-At. 油橄榄和拟南芥之间的PRX复制基因对;Oe-Pt. 油橄榄和毛果杨之间的PRX复制基因对。Ka, nonsynonymous substitution rate; Ks, synonymous substitution rate; Oe-At,PRXduplicate gene pairs between olive andArabidopsis thaliana; Oe-Pt,PRXduplicate gene pairs between olive and black cottonwood.

    Figure 5.Ka, Ks analyses of olive class PRXduplicated genes

    ?nbsp; 6油橄榄Ⅲ籺i>PRX基因的系统进化树(A)、保守基序(B)和基因结构图(C(/p>

    Figure 6.Phylogeny (A), conserved motif (B) and extron-intron structure (C) of the olive class PRXgenes

    ?nbsp; 7油橄榄Ⅲ籺i>PRX的启动子上的顺式作用元件分析

    Figure 7.cis-element analysis of promoters of olive class PRXgenes

    ?nbsp; 8油橄榄Ⅲ籺i>PRX基因在不同器官或组织中的表达模式

    模块A. 在不同组织中均高表达;模块B. 在不同组织中均有较高表达;模块C. 在不同组织中均较低表达;模块D. 在花中特异高表达;模块E. 在除果外的组织中高表达;模块F. 在除果外的组织较高表? 模块G. 在根中特异高表达;模块H. 在各组织中低表达或几乎不表达。Module A, high expression in all tissues; module B, relative high expression in all tissues; module C, relative low expression in all tissues; module D, high specific expression in flower; module E, high expression in all tissues except fruit; module F, relative high expression in all tissues except fruit; module G, high specific expression in root; module H, low or no expression in all tissues.

    Figure 8.Expression patterns of olive class PRXgenes in different organs or tissues

    ?nbsp; 9RT-qPCR验证转录组数?/p>

    柱状图为运用RNA-seq得到的tpm值(相对表达?)。折线图为运用RT-qPCR得到?−ΔΔCT值(相对表达?)。Bars indicate tpm value measured by RNA-seq (relative expression 1). Lines indicate 2−ΔΔCTmeasured by RT-qPCR (relative expression 2).

    Figure 9.RT-qPCR validations of RNA-seq data

    ?nbsp; 10油橄榄Ⅲ籺i>PRX基因响应干热和水涝胁迫的差异表达模式

    Day(−3? 干旱处理?天;Day13. 干旱处理?3天且伴随高温;Day27. 干旱处理?7天;Day80. 复水?2天。模?. 干旱期间基因表达下调,复水后上调;模?. 干旱期间基因表达上调,复水后下调;模?. 后期干旱期间基因表达上调,后期干旱及复水后下调;模块4. 仅在高温下基因表达上调,高温胁迫后,基因表达下调。复制基因名称的颜色与系统进化分组的颜色相对应。Day(−3? 3 d before drought treatment; Day13, 13th day of drought treatment with high temperature; Day27, 27th day after drought treatment; Day80, 52 d after re-irrigation. Module 1, gene expression is down regulated during drought and up regulated after rehydration; module 2, gene expression is upregulated during drought and downregulated after rehydration; module 3, gene expression is upregulated during late drought, and downregulated after late drought and rehydration; module 4, gene expression is upregulated only under high temperature, and downregulated after high temperature stress. The color of the replicated gene name corresponds to the color of the phylogenetic grouping.

    Figure 10.Differential expression patterns of class PRXgenes in olive oil in response to dry heat and waterlogging stresses

    ?nbsp; 1油橄榄Ⅲ籺i>PRX基因的命名及其理化性质

    Table 1.Nomenclature and physicochemical properties of class PRXgenes from olive

    名称 Name ID 内含子相
    Intron phase
    蛋白质长
    Protein length/aa
    分子
    Molecular mass/kDa
    等电
    Isoelectric point
    信号
    Signal peptide
    预测的亚细胞定位
    Predicted subcellular localization
    OePRX1 EVM0022477 0 344 38.40 6.10 No 胞外 Extracellular
    OePRX2 EVM0032926 0 266 29.38 8.97 No 细胞 Cytosol
    OePRX3 EVM0020804 0 327 35.65 9.21 Yes 叶绿 Chloroplast
    OePRX4 EVM0047797 100 327 35.92 8.24 No 细胞 Nucleus
    OePRX5 EVM0009292 100 316 34.40 8.72 Yes 液泡 Vacular membrane
    OePRX6 EVM0060238 0 330 35.97 8.89 No 叶绿 Chloroplast
    OePRX7 EVM0022620 12001000 276 30.39 8.66 No 细胞 Cytosol
    OePRX8 EVM0017319 1200201 279 30.58 7.70 No 细胞 Cytosol
    OePRX9 EVM0047458 20010 250 27.43 5.67 No 细胞 Cytosol
    OePRX10 EVM0057886 0 319 34.48 6.98 Yes 叶绿 Chloroplast
    OePRX11 EVM0047784 0 339 37.00 7.48 Yes 质膜 Plasma membrane
    OePRX12 EVM0039807 20 358 38.84 7.51 Yes 叶绿 Chloroplast
    OePRX13 EVM0011450 0 317 34.35 9.14 Yes 叶绿 Chloroplast
    OePRX14 EVM0019223 1 309 35.27 9.41 Yes 胞外 Extracellular
    OePRX15 EVM0012728 1 320 36.91 9.20 Yes 细胞 Cytosol
    OePRX16 EVM0000231 0 336 37.28 7.08 Yes 叶绿 Chloroplast
    OePRX17 EVM0024793 0 322 35.21 8.38 Yes 叶绿 Chloroplast
    OePRX18 EVM0042519 0 321 34.96 8.76 Yes 叶绿 Chloroplast
    OePRX19 EVM0059982 0 321 34.90 8.77 Yes 叶绿 Chloroplast
    OePRX20 EVM0019685 0 333 36.73 5.68 No 质膜 Plasma membrane
    OePRX21 EVM0058087 0 324 35.74 8.53 Yes 细胞 Cytosol
    OePRX22 EVM0027348 0 323 35.02 5.82 Yes 液液泡膜 Vacular membrane
    OePRX23 EVM0060830 0 331 36.34 9.41 Yes 胞外 Extracellular
    OePRX24 EVM0015621 0 247 27.39 8.88 No 细胞 Nucleus
    OePRX25 EVM0010445 12101221 327 35.56 9.26 No 叶绿 Chloroplast
    OePRX26 EVM0006524 0 338 37.53 6.45 Yes 胞外 Extracellular
    OePRX27 EVM0042768 22 304 32.63 6.58 Yes 叶绿 Chloroplast
    OePRX28 EVM0048359 0 355 37.59 8.35 Yes 叶绿 Chloroplast
    OePRX29 EVM0028664 0 317 34.49 9.09 Yes 液泡 Vacular membrane
    OePRX30 EVM0035621 0 327 34.85 5.51 Yes 胞外 Extracellular
    OePRX31 EVM0048816 100 324 36.67 6.26 Yes 胞外 Extracellular
    OePRX32 EVM0003637 1002 350 39.07 8.83 Yes 胞外 Extracellular
    OePRX33 EVM0019330 0 333 36.44 9.48 Yes 液泡 Vacular membrane
    OePRX34 EVM0033281 2100102 273 30.15 7.73 No 细胞 Cytosol
    OePRX35 EVM0015060 10100000 319 35.73 6.63 No 叶绿 Chloroplast
    OePRX36 EVM0017946 0 329 37.29 8.48 Yes 细胞 Cytosol
    OePRX37 EVM0021366 ∑/td> 331 36.79 9.34 Yes 叶绿 Chloroplast
    OePRX38 EVM0060527 0 342 37.64 6.21 Yes 细胞 Cytosol
    OePRX39 EVM0014494 0 321 35.37 6.18 Yes 胞外 Extracellular
    OePRX40 EVM0042196 0 319 34.12 9.41 Yes 叶绿 Chloroplast
    OePRX41 EVM0015681 0 346 38.94 8.86 Yes 内质 Endoplasmic reticulum
    OePRX42 EVM0047610 0 327 35.27 8.80 Yes 叶绿 Chloroplast
    OePRX43 EVM0047452 20002 379 41.95 8.87 No 叶绿 Chloroplast
    OePRX44 EVM0061929 0 319 34.23 4.45 Yes 胞外 Extracellular
    OePRX45 EVM0054999 0 291 32.27 5.44 No 胞外 Extracellular
    OePRX46 EVM0048606 0 328 35.67 6.51 Yes 液泡 Vacular membrane
    OePRX47 EVM0037058 20 315 34.41 7.55 No 内质 Endoplasmic reticulum
    OePRX48 EVM0022847 20 413 45.85 9.56 No 叶绿 Chloroplast
    OePRX49 EVM0020385 20 373 41.16 9.35 No 叶绿 Chloroplast
    OePRX50 EVM0045080 0 317 34.55 9.02 Yes 叶绿 Chloroplast
    OePRX51 EVM0044622 0 320 35.53 9.54 Yes 叶绿 Chloroplast
    OePRX52 EVM0021425 0 324 36.14 6.17 Yes 胞外 Extracellular
    OePRX53 EVM0045494 0 327 35.52 8.71 Yes 液泡 Vacular membrane
    OePRX54 EVM0020915 20 306 33.46 8.90 Yes 液泡 Vacular membrane
    OePRX55 EVM0031491 0 314 34.07 9.32 Yes 叶绿 Chloroplast
    OePRX56 EVM0005944 2 292 31.79 9.45 Yes 叶绿 Chloroplast
    OePRX57 EVM0015088 0 317 34.42 9.13 Yes 胞外 Extracellular
    OePRX58 EVM0050632 0 314 34.04 9.25 Yes 叶绿 Chloroplast
    OePRX59 EVM0028088 0 317 34.23 8.99 Yes 胞外 Extracellular
    OePRX60 EVM0025336 0 326 34.42 7.58 No 叶绿 Chloroplast
    OePRX61 EVM0012469 0 317 34.68 9.33 Yes 胞外 Extracellular
    OePRX62 EVM0049574 0 340 37.08 6.25 Yes 胞外 Extracellular
    OePRX63 EVM0050273 10 240 26.55 6.22 No 叶绿 Chloroplast
    OePRX64 EVM0050817 0 310 34.15 8.46 Yes 叶绿 Chloroplast
    OePRX65 EVM0009492 0 322 34.85 4.99 Yes 叶绿 Chloroplast
    OePRX66 EVM0047271 1200201 333 36.96 8.64 No 质膜 Plasma membrane
    OePRX67 EVM0005889 210122 509 58.00 8.73 No 细胞 Nucleus
    OePRX68 EVM0026529 0 331 36.43 9.50 Yes 液泡 Vacular membrane
    OePRX69 EVM0038965 20 310 33.90 9.23 Yes 质膜 Plasma membrane
    OePRX70 EVM0024841 0 328 35.72 8.37 Yes 叶绿 Chloroplast
    OePRX71 EVM0047959 3 314 34.07 6.94 Yes 叶绿 Chloroplast
    OePRX72 EVM0059042 0 339 37.43 5.56 Yes 质膜 Plasma membrane
    OePRX73 EVM0022158 0 318 34.18 6.88 Yes 叶绿 Chloroplast
    OePRX74 EVM0027175 0 326 36.14 9.75 Yes 叶绿 Chloroplast
    OePRX75 EVM0057531 20 287 30.73 8.89 Yes 液泡 Vacular membrane
    OePRX76 EVM0032201 0 293 32.34 8.75 No 叶绿 Chloroplast
    OePRX77 EVM0059919 0 339 37.61 8.36 Yes 液泡 Vacular membrane
    OePRX78 EVM0011789 0 355 39.51 8.06 No 质膜 Plasma membrane
    OePRX79 EVM0024970 ∑/td> 329 36.54 9.19 Yes 叶绿 Chloroplast
    OePRX80 EVM0047604 100 339 37.82 8.30 No 细胞 Cytosol
    OePRX81 EVM0061300 0 330 36.94 5.94 Yes 叶绿 Chloroplast
    OePRX82 EVM0042525 0 298 32.64 8.62 Yes 胞外 Extracellular
    OePRX83 EVM0045066 0 318 34.03 9.15 Yes 叶绿 Chloroplast
    OePRX84 EVM0029808 0 354 39.38 5.68 No 胞外 Extracellular
    OePRX85 EVM0032932 1022010 247 27.30 5.65 No 细胞 Cytosol
    OePRX86 EVM0038819 2001020 250 27.72 5.44 No 细胞 Cytosol
    OePRX87 EVM0002745 200 321 34.58 4.77 No 细胞 Nucleus
    OePRX88 EVM0038873 200 326 34.71 8.30 Yes 液泡 Vacular membrane
    OePRX89 EVM0026260 2 348 38.22 9.56 Yes 质膜 Plasma membrane
    OePRX90 EVM0044542 0 296 32.61 8.14 Yes 胞外 Extracellular
    OePRX91 EVM0046395 0 318 34.24 9.54 Yes 叶绿 Chloroplast
    OePRX92 EVM0042595 0 316 33.95 7.51 Yes 叶绿 Chloroplast
    OePRX93 EVM0047351 0 320 35.08 5.48 Yes 叶绿 Chloroplast
    OePRX94 EVM0045920 0 332 35.75 4.63 Yes 胞外 Extracellular
    OePRX95 EVM0044144 0 325 35.63 8.75 No 叶绿 Chloroplast
    OePRX96 EVM0048820 0 314 35.88 8.61 Yes 细胞 Cytosol
    OePRX97 EVM0058650 0 350 38.67 6.94 Yes 叶绿 Chloroplast
    OePRX98 EVM0026875 0 371 40.68 6.31 No 叶绿 Chloroplast
    OePRX99 EVM0019820 0 340 36.88 6.59 Yes 胞外 Extracellular
    OePRX100 EVM0018143 20020200000 394 43.59 9.28 No 叶绿 Chloroplast
    OePRX101 EVM0029423 0 343 37.01 8.94 Yes 叶绿 Chloroplast
    OePRX102 EVM0036633 0 342 37.59 9.17 Yes 胞外 Extracellular
    OePRX103 EVM0041887 1 312 33.33 5.97 Yes 叶绿 Chloroplast
    OePRX104 EVM0032297 0 327 35.71 8.57 Yes 胞外 Extracellular
    OePRX105 EVM0042746 0 302 33.53 8.96 Yes 胞外 Extracellular
    OePRX106 EVM0051394 0 343 37.01 8.94 Yes 叶绿 Chloroplast

    ?nbsp; 26个油橄榄Ⅲ类PRX基因RT-qPCR的引?/p>

    Table 2.Primers of six olive class PRXgenes used for RT-qPCR

    基因名称
    Gene name
    引物?′?′) Primer sequence (5′−3? 基因产物长度
    Gene product length/bp
    OePRX1 F: TCCAGGAGTTGTTTCTTGTGC 114
    R: CCTTCTTCCGTCTTTTCTTCC
    OePRX8 F: AAGGGCGCATCCTGAAAG 200
    R: AGAAGGCATCTTCATCCTTAGC
    OePRX33 F: GGAAGCATAATAAGCGAGAAG 235
    R: TTATTGGAGCCACTCAAACTG
    OePRX36 F: ACAAACGCCACAAGAACACTG 195
    R: CACTCCCTCTCTAAAGCCTCC
    OePRX66 F: GATTCGCAATGAGGAGGAGTA 140
    R: AGCAACAACACCAGCAAGC
    OePRX99 F: GCTCGGGCTTTTAGAATCATC 204
    R: GAAGGAAGGTTTGCCAGTGTT
    下载: 导出CSV
  • [2]Rao G, Zhang J, Liu X, et al. De novo assembly of a new Olea europaeagenome accession using nanopore sequencing[J/OL]. Horticulture Research, 2021 [2021?4?1]. DOI: 10.1038/s41438-021-00498-y. [3]Mathé C, Barre A, Jourda C, et al. Evolution and expression of class peroxidases[J]. Archives of Biochemistry and Biophysics, 2010, 500(1): 58?5. doi:10.1016/j.abb.2010.04.007 [4]Passardi F, Bakalovic N, Teixeira F K, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes[J]. Genomics, 2007, 89(5): 567?79. doi:10.1016/j.ygeno.2007.01.006 [5]Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany, 2002, 53(372): 1305?319. doi:10.1093/jexbot/53.372.1305 [6]Skulachev V P. Cytochrome c in the apoptotic and antioxidant cascades[J]. FEBS Letters, 1998, 423(3): 275?80. doi:10.1016/S0014-5793(98)00061-1 [7]Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, et al. A new versatile peroxidase from Pleurotus[J]. Biochemical Society Transactions, 2001, 29(Pt2): 116?22. [8]Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255?65. doi:10.1007/s00299-005-0972-6 [9]Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall[J]. Trends in Plant Science, 2004, 9(11): 534?40. doi:10.1016/j.tplants.2004.09.002 [10]Allison S D, Schultz J C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak ( Quercus rubraL.)[J]. Journal of Chemical Ecology, 2004, 30(7): 1363?379. doi:10.1023/B:JOEC.0000037745.66972.3e [11]Gazaryan I G, Lagrimini L M, Ashby G A, et al. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases[J]. The Biochemical Journal, 1996, 313(Pt3): 841?47. [12]Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2008, 60(2): 377?90. [13]Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129?38. [14]Passardi F, Longet D, Penel C, et al. The class peroxidase multigenic family in rice and its evolution in land plants[J]. Phytochemistry, 2004, 65(13): 1879?893. doi:10.1016/j.phytochem.2004.06.023 [15]Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95?08. doi:10.1016/j.gene.2015.04.041 [16]Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populusclass peroxidase family[J]. The Plant Cell, 2014, 26(6): 2404?419. doi:10.1105/tpc.114.124750 [17]Cao Y, Han Y, Meng D, et al. Structural, evolutionary, and functional analysis of the class peroxidase gene family in chinese pear ( Pyrus bretschneideri)[J/OL]. Frontier in Plant Science, 2016 [2016?2?9]. DOI: 10.3389/fpls.2016.01874. [18]Xiao H, Wang C, Khan N, et al. Genome-wide identification of the class PODgene family and their expression profiling in grapevine ( Vitis viniferaL.)[J/OL]. BMC Genomics, 2020.[2020?6?29]. DOI: 10.1186/s12864-020-06828-z. [19]Wu C, Ding X, Ding Z, et al. The class peroxidase ( POD) gene family in cassava: identification, phylogeny, duplication, and expression[J/OL]. International Journey of Molecular Sciences, 2019 [2019?6?3]. DOI: 10.3390/ijms20112730. [20]Yan J, Su P, Li W, et al. Genome-wide and evolutionary analysis of the class peroxidase gene family in wheat and Aegilops tauschiireveals that some members are involved in stress responses[J/OL]. BMC Genomics, 2019 [2019?8?2]. DOI: 10.1186/s12864-019-6006-5. [21]Fernández-Pérez F, Pomar F, Pedreño M A, et al. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsisby altering the proportion of syringyl units[J]. Physiologia Plantarum, 2015, 154(3): 395?06. doi:10.1111/ppl.12310 [22]Fernández-Pérez F, Vivar T, Pomar F, et al. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175(1): 86?4. [23]Herrero J, Fernández-Pérez F, Yebra T, et al. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thalianainvolved in lignin biosynthesis[J]. Planta, 2013, 237(6): 1599?612. doi:10.1007/s00425-013-1865-5 [24]Wu Y, Yang Z, How J, et al. Overexpression of a peroxidase gene ( AtPrx64) of Arabidopsis thalianain tobacco improves plant’s tolerance to aluminum stress[J]. Plant Molecular Biology, 2017, 95(1): 157?68. [25]Kidwai M, Dhar Y V, Gautam N, et al. Oryza sativa class peroxidase ( OsPRX38) overexpression in Arabidopsis thalianareduces arsenic accumulation due to apoplastic lignification[J]. Journal of Hazardous Materials, 2019, 362(15): 383?93. [26]Ramírez-Tejero J A, Jiménez-Ruiz J, Leyva-Pérez M d l O, et al. Gene expression pattern in olive tree organs ( Olea europaeaL.)[J/OL]. Genes, 2020 [2020?5?2]. DOI: 10.3390/genes11050544. [27]Tsamir-Rimon M, Ben-Dor S, Feldmesser E, et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases[J]. New Phytologist, 2021, 229(3): 1398?414. doi:10.1111/nph.16907 [28]Dastkar E, Soleimani A, Jafary H, et al. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees[J]. Scientific Reports, 2020, 10(1): 1?3. doi:10.1038/s41598-019-56847-4 [29]Li H, Poulos T L. Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures[J]. Structure, 1994, 2(6): 461?64. doi:10.1016/S0969-2126(00)00046-0 [30]Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2019, 48(D1): D265−D268. [31]Oliveira R A d C, de Andrade A S, Imparato D O, et al. Analysis of Arabidopsis thalianaredox gene network indicates evolutionary expansion of class peroxidase in plants[J/OL]. Scientific Reports, 2019 [2019?0?1]. DOI: 10.1038/s41598-019-52299-y. [32]Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science, 2006, 313: 1596?604. doi:10.1126/science.1128691 [33]芮伟? 钙与过氧化物酶在梨石细胞合成中的关系[D]. 南京: 南京农业大学, 2017.

    Rui W K. Effects of calcium and peroxidase involved in stone cells formation in pear fruit[D]. Nanjing: Nanjing Agricultural Unversity, 2017. [34]薛亚? 水稻Ⅲ类过氧化物酶基囟i>OsPER2咋i>OsPER4在细胞壁合成中的功能分析[D]. 武汉: 华中农业大学, 2021.

    Xue Y L. Functional analysis of rice class peroxdases genes OsPER2 and OsPER4 in cell wall synthesis[D]. Wuhan: Huazhong Agricultural University, 2021. [35]Teufel A I, Johnson M M, Laurent J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2018, 36(2): 304?14. [36]Shigeto J, Tsutsumi Y. Diverse functions and reactions of class peroxidases[J]. New Phytologist, 2016, 209(4): 1395?402. doi:10.1111/nph.13738 [37]Xu S, Chong K. Remembering winter through vernalisation[J]. Nature Plants, 2018, 4(12): 997?009. doi:10.1038/s41477-018-0301-z [38]Passardi F, Tognolli M, de Meyer M, et al. Two cell wall associated peroxidases from Arabidopsisinfluence root elongation[J]. Planta, 2006, 223(5): 965?74. doi:10.1007/s00425-005-0153-4 [39]Kim Y H, Kim C Y, Song W K, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco[J]. Planta, 2008, 227(4): 867?81. doi:10.1007/s00425-007-0663-3 [40]Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant[J]. Molecules and Cells, 2012, 34(6): 539?48. doi:10.1007/s10059-012-0230-z [41]Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseusperoxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco[J]. Protoplasma, 2012, 249(2): 423?32. doi:10.1007/s00709-011-0294-1 [42]Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiology, 2007, 145(3): 890?04. doi:10.1104/pp.107.103325 [43]Daudi A, Cheng Z, O’Brien J A, et al. The apoplastic oxidative burst peroxidase in Arabidopsisis a major component of pattern-triggered immunity[J]. The Plant Cell, 2012, 24(1): 275?87. doi:10.1105/tpc.111.093039 [44]Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59?1. doi:10.1016/j.molp.2019.10.012
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?10)/ ?2)
    计量
    • 文章访问?235
    • HTML全文浏览野58
    • PDF下载野52
    • 被引次数:0
    出版历程
    • 收稿日期:2021-08-03
    • 录用日期:2022-10-28
    • 修回日期:2021-09-17
    • 网络出版日期:2022-11-01
    • 刊出日期:2023-04-25

    目录

      Baidu
      map