留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

亚洲百合部分品种灰霉病抗性评价及抗病生理响应

胡浩,汪莲娞/a>,隗功磉/a>,陈佳伞/a>,贾桂霝/a>

downloadPDF
胡浩, 汪莲? 隗功? 陈佳? 贾桂? 亚洲百合部分品种灰霉病抗性评价及抗病生理响应[J]. 北京林业大学学报, 2023, 45(3): 104-112. doi: 10.12171/j.1000-1522.20210254
引用本文: 胡浩, 汪莲? 隗功? 陈佳? 贾桂? 亚洲百合部分品种灰霉病抗性评价及抗病生理响应[J]. 北京林业大学学报, 2023, 45(3): 104-112.doi:10.12171/j.1000-1522.20210254
Hu Hao, Wang Lianjuan, Wei Gonglei, Chen Jiawei, Jia Guixia. Evaluation of resistance to Botrytis elliptica and the physiological response of some Asian lily varieties[J]. Journal of Beijing Forestry University, 2023, 45(3): 104-112. doi: 10.12171/j.1000-1522.20210254
Citation: Hu Hao, Wang Lianjuan, Wei Gonglei, Chen Jiawei, Jia Guixia. Evaluation of resistance toBotrytis ellipticaand the physiological response of some Asian lily varieties[J].Journal of Beijing Forestry University, 2023, 45(3): 104-112.doi:10.12171/j.1000-1522.20210254
doi:10.12171/j.1000-1522.20210254
基金项目:重要花卉种质资源精准评价与基因发掘(2019YFD1000400),河北省重点研发计划项目—花卉现代种业科技创新团队?1326317D(/div>
详细信息
    作者简今

    胡浩。主要研究方向:花卉种质创新与育种。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:15576036449@163.com">15576036449@163.com 地址?00083 北京市海淀区清华东?5号北京林业大学园林学陡/p>

    责任作耄

    贾桂霞,教授,博士生导师。主要研究方向:花卉种质创新与育种。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:gxjia@bjfu.edu.cn">gxjia@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S682.2

Evaluation of resistance toBotrytis ellipticaand the physiological response of some Asian lily varieties

  • 摘要: 目的为筛选出抗灰霉病能力强的亚洲百合品种,对部分Tiger、Pearl系列亚洲百合品种及兰州百合进行灰霉病抗性评价并初步探究其抗病的生理机制、/sec> 方法对不同品种亚洲百合进行离体叶片接菌,评价其相对抗病能力,并测定筛选出的抗病和感病品种接菌后的生理变化、/sec> 结果?)Tiger、Pearl系列百合品种及兰州百合对灰霉病的抗性存在差异。其中抗灰霉病能力相对较强的品种是‘Pearl Melanie’,属于中抗水平;抗性最弱的是‘Pearl Justin’、兰州百合、‘Pearl White’和‘White Twinkle’。(2)供试百合的抗性水平与其气孔密度、气孔大小无显著相关性。(3)相对抗病的品种‘Pearl Melanie’和感病品种‘Pearl Justin’在接菌后的生理响应显著不同。随着接菌时间的延长,丙二醛的含量总体呈增加趋势,草酸氧化酶和几丁质酶的活性逐渐增强,?1,3-葡聚糖酶的活性随时间的延长呈下降趋势。其中抗病品种的丙二醛含量相对低于感病品种,草酸氧化酶和几丁质酶的活性高于感病品种、/sec> 结论叶片气孔的性状与抗病能力无显著相关性,抗病能力不同的百合在生理机制上有一定差异。在生理响应过程中,丙二醛含量、草酸氧化酶活性和几丁质酶活性可作为筛选亚洲百合对灰霉病抗性的评价指标、/sec>

  • ?nbsp; 1椭圆葡萄孢菌的培养(A)及菌丝体观察(B(/p>

    Figure 1.Culture ofB. elliptica(A) and observation of mycelium (B)

    ?nbsp; 2不同品种/种百合接菌后5 d内的发病率变匕/p>

    Figure 2.Changes of incidence rate of different varieties/species of lily within 5 d after inoculation

    ?nbsp; 3不同抗性百合的叶片气孔观察

    Figure 3.Observation on leaf stomata ofLiliumwith different resistance

    ?nbsp; 4‘马尼拉/光芒’和‘贾斯汀’叶片接菌后的病斑变匕/p>

    Figure 4.Lesion changes on leaves of ‘Pearl Melanie and ‘Pearl Justin after inoculation

    ?nbsp; 5‘马尼拉/光芒’和‘贾斯汀’叶片接菌后的生理响库/p>

    Figure 5.Physiological response of ‘Pearl Melanie and ‘Pearl Justin leaves toB. ellipticaafter inoculation

    ?nbsp; 2叶部病斑分级标准

    Table 2.Grading standard of leaf lesions

    病级 Disease grade 分级标准 Grading standard
    0 无病 No lesions
    1 叶片病斑较少,病斑面积占整个叶面积的5%以下
    Fewer leaf lesions, accounting for less than 5% of the entire leaf area
    3 病斑较多,病斑面积占整个叶面积的5% ~ 30%
    More lesions, accounting for 5% to 30% of the entire leaf area
    5 病斑较多,病斑面积占整个叶面积的31% ~ 50%
    More lesions, accounting for 31% to 50% of the entire leaf area
    7 病斑很多或者融合成大斑,病斑面积占整个面积?0%以上
    Many lesions or fused into large lesions, accounting for more than 50% of the entire leaf area
    下载: 导出CSV

    ?nbsp; 3不同百合离体接种条件下的灰霉菌抗性鉴宙/p>

    Table 3.Identification of resistance toB. ellipticaunder ex vivo inoculation conditions of differentLiliumcultivars

    ?品种 Species/cultivar 发病
    Incidence rate
    相对病情指数
    Relative disease index
    相对抗病指数
    Relative resistance index
    抗性水
    Resistance level
    兰州百合L. davidiivar.unicolor 0.54 0.89 0.11 HS
    ‘美人 ‘Pearl Carolina‘/td> 0.49 0.91 0.09 HS
    ‘马尼拉/光芒 ‘Pearl Melanie‘/td> 0.17 0.39 0.61 R
    ‘雷恩 ‘Pearl Loraine‘/td> 0.31 0.71 0.29 HS
    ‘红旗 ‘Red Life‘/td> 0.39 0.59 0.41 S
    ‘幼虎 ‘Tiger Babies‘/td> 0.33 0.48 0.52 S
    ‘璀璨 ‘Pearl Stacey‘/td> 0.34 0.79 0.21 HS
    ‘贾斯汀 ‘Pearl Justin‘/td> 0.56 0.99 0.01 HS
    ‘红色的天鹅绒 ‘Red Velvet‘/td> 0.39 0.85 0.15 HS
    ‘粉色飞行 ‘Pink Flight‘/td> 0.39 0.63 0.37 S
    ‘白色闪耀 ‘White Twinkle‘/td> 0.52 0.92 0.08 HS
    ‘白珍珠 ‘Pearl White‘/td> 0.53 0.97 0.03 HS
    注:R. 中抗;S. 中感 HS. 高感。下同。Notes: R, moderately resistant; S, moderately susceptible; HS, highly susceptible. The same below.
    下载: 导出CSV

    ?nbsp; 4不同抗性百合气孔特?/p>

    Table 4.Stomatal traits ofLiliumwith different resistance

    ?品种
    Species/cultivar
    气孔长度
    Stoma length/μm
    气孔宽度
    Stoma width/μm
    气孔长宽毓br/>Stoma length-width ratio 气孔密度/(个·mm?(br/>Stoma density/(number·mm?) 抗性水干br/>Resistance level
    兰州百合L. davidiivar.unicolor 62.95 ± 2.01 32.04 ± 1.31 1.96 87.46 ± 4.93 HS
    ‘美人 ‘Pearl Carolina‘/td> 84.07 ± 2.57 48.99 ± 1.66 1.72 35.55 ± 2.14 HS
    ‘马尼拉/光芒 ‘Pearl Melanie‘/td> 84.95 ± 5.08 41.94 ± 2.19 2.03 30.87 ± 1.40 R
    ‘雷恩 ‘Pearl Loraine‘/td> 74.12 ± 3.50 36.83 ± 1.95 2.01 48.17 ± 7.98 HS
    ‘红旗 ‘Red Life‘/td> 100.67 ± 2.49 46.53 ± 2.87 2.16 36.01 ± 2.92 S
    ‘幼虎 ‘Tiger Babies‘/td> 78.16 ± 5.55 38.31 ± 1.37 2.04 69.69 ± 2.14 S
    ‘璀璨 ‘Pearl Stacey‘/td> 69.85 ± 4.14 41.93 ± 1.81 1.67 59.40 ± 2.14 HS
    ‘贾斯汀 ‘Pearl Justin‘/td> 91.85 ± 5.22 46.95 ± 2.18 1.96 26.66 ± 2.43 HS
    ‘红色的天鹅绒 ‘Red Velvet‘/td> 87.71 ± 3.73 41.57 ± 2.80 2.11 43.96 ± 0.81 HS
    ‘粉色飞行 ‘Pink Flight‘/td> 102.28 ± 5.43 48.59 ± 1.95 2.10 42.56 ± 2.14 S
    ‘白色闪耀 ‘White Twinkle‘/td> 62.32 ± 2.82 37.74 ± 2.58 1.65 58.46 ± 3.53 HS
    ‘白珍珠 ‘Pearl White‘/td> 86.89 ± 1.95 38.90 ± 3.98 2.23 43.50 ± 5.06 HS
    下载: 导出CSV

    ?nbsp; 5不同材料的气孔性状与抗性之间的相关?/p>

    Table 5.Correlation between stomatal traits and resistance of different materials

    气孔性状
    Stomatal trait
    指标
    Index
    气孔长度
    Stoma length
    气孔宽度
    Stoma width
    气孔密度
    Stoma density
    抗性水干br/>Resistance level
    气孔长度
    Stoma length
    r 1 0.781** ?.729** ?.416
    P 0.003 0.007 0.178
    气孔宽度
    Stoma width
    r 0.781** 1 ?.774** ?.229
    P 0.003 0.003 0.474
    气孔密度
    Stoma density
    r ?.729** ?.774** 1 0.253
    P 0.007 0.003 0.427
    抗性水干br/>Resistance level r ?.416 ?.229 0.253 1
    P 0.178 0.474 0.427
    注:**表示?.01水平上极显著相关。Note: ** indicates a very significant correlation at 0.01 level.
    下载: 导出CSV
  • [2]曾小? 观赏百合种质资源多样性研究[D]. 兰州: 西北师范大学, 2004.

    Zeng X Y. The diversity research on germplasm resources of decorative lily[D]. Lanzhou: Northwest Normal University, 2004. [3]陈俊? 中国花经[M]. 北京: 中国林业出版? 1990.

    Chen J Y. Chinese flower classic[M]. Beijing: China Forestry Publishing House, 1990. [4]杜方. 百合不同器官转录组分析及SSR标记开发应用[D]. 杭州: 浙江大学, 2014.

    Du F. Transcriptome analysis of different lily organs and development and applications of SSR markers[D]. Hangzhou: Zhejiang University, 2014. [5]Tuyl J M, Arens P. Lilium: breeding history of the modern cultivar assortment[J]. Acta Horticulturae, 2011, 900: 223?30. [6]Matthews V. The international lily register and checklist, 2007[M]. London: Royal Horticultural Society (RHS), 2007. [7]董航, 张杰, 孙红? 亚洲百合新品种引进与筛选[J]. 沈阳农业大学学报, 2013, 44(6): 816?19. doi:10.3969/j.issn.1000-1700.2013.06.018

    Dong H, Zhang J, Sun H M. Introduction and screening of new varieties of Asiatic hybrid lily[J]. Journal of Shenyang Agricultural University, 2013, 44(6): 816?19. doi:10.3969/j.issn.1000-1700.2013.06.018 [8]王欢, 孔滢, 郎利? ? 亚洲百合与大花卷丹杂种F1重要性状的遗传分析[J]. 华北农学? 2017, 32(4): 114?21. doi:10.7668/hbnxb.2017.04.019

    Wang H, Kong Y, Lang L X, et al. Genetic analysis of important charactersin F1 hybridsof LiliumAsiatic hybrids and L. leichtlinivar. maximowiczi[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 114?21. doi:10.7668/hbnxb.2017.04.019 [9]徐琼, 徐秉? 王芳. 观赏百合叶枯病症状类型与病原菌鉴定[J]. 植物保护, 2006, 32(5): 61?4. doi:10.3969/j.issn.0529-1542.2006.05.019

    Xu Q, Xu B L, Wang F. Symptom types and identification of lily blight[J]. Plant Protection, 2006, 32(5): 61?4. doi:10.3969/j.issn.0529-1542.2006.05.019 [10]Chiou A L, Wu W S. Isolation, identification and evaluation of bacterial antagonists against Botrytis ellipticaon lily[J]. Journal of Phytopathology, 2001, 149(6): 319?24. doi:10.1046/j.1439-0434.2001.00627.x [11]杜艳? 曹兴, 王桂? ? 百合灰霉病病原菌鉴定及其部分生物学特性测定[J]. 南方农业学报, 2019, 50(2): 307?14. doi:10.3969/j.issn.2095-1191.2019.02.13

    Du Y L, Cao X, Wang G Q, et al. Identification and partial biological characteristics of pathogen causing lily gray mold[J]. Journal of Southern Agriculture, 2019, 50(2): 307?14. doi:10.3969/j.issn.2095-1191.2019.02.13 [12]崔祺. 岷江百合响应灰霉病侵染的转录组分析及抗灰霉病相关基因的挖掘[D]. 北京: 北京林业大学, 2018.

    Cui Q. Transcriptome analysis of Lilium regaleresponsive to Botrytis ellipticainoculation and mining of resistance genes[D]. Beijing: Beijing Forestry University, 2018. [13]Kan J A L. Infection strategies of Botrytis cinerea[J]. Acta Horticulturae, 2005, 669: 77?0. [14]Rossi F R, Gárriz A, Marina M, et al. The sesquiterpene botrydial produced by Botrytis cinereainduces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling[J]. Molecular Plant-Microbe Interactions, 2011, 24(8): 888. doi:10.1094/MPMI-10-10-0248 [15]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2): 123?32. doi:10.1016/j.copbio.2005.02.001 [16]李芳? 管玲? 胡凤? 百合灰霉病对东方百合不同抗性品种的生理影响[J]. 东北林业大学学报, 2020, 48(7): 107?13, 119. doi:10.3969/j.issn.1000-5382.2020.07.021

    Li F L, Guan L L, Hu F R. Physiological response of different resistant cultivars of Liliumoriental hybrid after inoculation with Botrytis cinerea[J]. Journal of Northeast Forestry University, 2020, 48(7): 107?13, 119. doi:10.3969/j.issn.1000-5382.2020.07.021 [17]Yang X, Yang J, Wang Y, et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase[J]. Transgenic Research, 2019, 28(1): 103?14. doi:10.1007/s11248-018-0106-x [18]Xian H Q, Li J R, Zhang L Q, et al. Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum[J]. Biotechnology Letters, 2012, 34(10): 1921?928. doi:10.1007/s10529-012-0989-1 [19]梁巧? 张娜, 魏列? ? 深绿木霉蛋白质TraT2A诱导兰州百合抗灰霉病的作用[J]. 中国生物防治学报, 2017, 33(4): 545?51. doi:10.16409/j.cnki.2095-039x.2017.04.016

    Liang Q L, Zhang N, Wei L X, et al. Effect of Trichoderma atrovirideproteinaceous TraT2A induced Lanzhou lily resistant to gray mold caused by Botrytis cinerea[J]. Chinese Journal of Biological Control, 2017, 33(4): 545?51. doi:10.16409/j.cnki.2095-039x.2017.04.016 [20]朱丽? 胡凤? 罗凤? 不同百合品种对百合灰霉病的抗病性鉴定[J]. 植物保护, 2010, 36(3): 148?51. doi:10.3969/j.issn.0529-1542.2010.03.036

    Zhu L M, Hu R F, Luo F X. Identification of disease resistance of Liliumspecies to lily gray mould[J]. Plant Protection, 2010, 36(3): 148?51. doi:10.3969/j.issn.0529-1542.2010.03.036 [21]熊慧, 马承? 李乐, ? 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学? 2014, 38(8): 868?77. doi:10.3724/SP.J.1258.2014.00081

    Xiong H, Ma C E, Li L, et al. Stomatal characteristics of ferns and angiosperms and their responses to changing light inten sity at different habitats[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 868?77. doi:10.3724/SP.J.1258.2014.00081 [22]王学? 黄见? 植物生理生化实验原理与技术[M]. 3? 北京: 高等教育出版? 2015.

    Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment[M]. 3rd ed. Beijing: Higher Education Press, 2015. [23]左豫? 康振? 杨传? ? β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J]. 植物病理学报, 2009, 39(6): 600?07. doi:10.3321/j.issn:0412-0914.2009.06.006

    Zuo Y H, Kang Z S, Yang C P, et al. Relationship between activities of β-1,3-glacanase and chitinase and resistance to Phytophthoraroot rot in soybean[J]. Acta Phytopathologica Sinica, 2009, 39(6): 600?07. doi:10.3321/j.issn:0412-0914.2009.06.006 [24]Hu N, Tu X R, Li K T, et al. Changes in protein content and chitinase and β-1, 3-glucanase activities of rice with blast resistance induced by ag-antibiotic 702[J]. Plant Diseases and Pests, 2017, 8(4): 33?6. [25]Zhang Z G, Yang J, Collinge D B, et al. Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels[J]. Plant Molecular Biology Reporter, 1996, 14: 266?72. doi:10.1007/BF02671662 [26]关晔? 苹果果面结构与轮纹病抗病性关系的研究[D]. 北京: 中国农业大学, 2015.

    Guan Y Q. Role of surface sturcture on susceptibility of apple fruit to Botryosphaeria dothidea[D]. Beijing: China Agricultural University, 2015. [27]万然. 中国野生葡萄种质叶片抗灰霉病的机制研究[D]. 杨凌: 西北农林科技大学, 2016.

    Wan R. Researches on the mechanism for Chinese wild vitis germplasm leaves against Botrytis cinerea[D]. Yangling: Northwest A&F University, 2016. [28]吕静? 玉米抗灰斑病组织细胞学及生理机制研究[D]. 沈阳: 沈阳农业大学, 2019.

    Lü J B. Study on cytology and physiological mechanism of resistant tissues to gray leaf spot of maize[D]. Shenyang: Shenyang Agricultural University, 2019. [29]Ziv C, Zhao Z Z, Gao Y G, et al. Multifunctional roles of plant cuticle during plant-pathogen interactions[J]. Frontiers in Plant Science, 2018, 9: 1088. doi:10.3389/fpls.2018.01088 [30]Gao X, Cui Q, Cao Q Z, et al. Evaluation of resistance to Botrytis ellipticain Liliumhybrid cultivars[J]. Plant Physiology and Biochemistry, 2018, 123: 392?99. doi:10.1016/j.plaphy.2017.12.025 [31]Baarlen P V, Staats M, Kan J A L V. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica[J]. Molecular Plant Pathology, 2004, 5(6): 559?74. doi:10.1111/j.1364-3703.2004.00253.x [32]Zhang F, Ruan X, Wang X, et al. Overex-pression of a chitinase gene from Trichoderma asperellumincreases disease resistance in transgenic soybean[J]. Applied Biochemistry and Biotechnology, 2016, 180: 1542?558. doi:10.1007/s12010-016-2186-5 [33]Núñez F F, Davey M R, Sanchez E C, et al. Conferred resistance to Botrytis cinereain Liliumby overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 2015, 34(7): 1201?209. doi:10.1007/s00299-015-1778-9 [34]Hu X R, Dai D J, Wang H D, et al. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea[J]. Scientific Reports, 2017, 7(1): 1019?024. doi:10.1038/s41598-017-01023-9 [35]Li Y G, Cai Y N, Liang Y B, et al. Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea[J]. Postharvest Biology and Technology, 2020, 161: 111086. doi:10.1016/j.postharvbio.2019.111086
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?5)/ ?5)
    计量
    • 文章访问?171
    • HTML全文浏览野50
    • PDF下载野33
    • 被引次数:0
    出版历程
    • 收稿日期:2021-07-08
    • 录用日期:2022-12-18
    • 修回日期:2021-09-17
    • 网络出版日期:2022-12-21
    • 刊出日期:2023-03-25

    目录

      Baidu
      map