留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

日本落叶松谷胱甘肽过氧化物酶(GPX)酶学特性与抗逆性研穵/p>

张萌,姜文婶/a>,王雪?/a>,蒋湘?/a>,盖颖

downloadPDF
张萌, 姜文? 王雪? 蒋湘? 盖颖. 日本落叶松谷胱甘肽过氧化物酶(GPX)酶学特性与抗逆性研究[J]. 北京林业大学学报, 2023, 45(2): 78-86. doi: 10.12171/j.1000-1522.20210230
引用本文: 张萌, 姜文? 王雪? 蒋湘? 盖颖. 日本落叶松谷胱甘肽过氧化物酶(GPX)酶学特性与抗逆性研究[J]. 北京林业大学学报, 2023, 45(2): 78-86.doi:10.12171/j.1000-1522.20210230
Zhang Meng, Jiang Wenting, Wang Xuechun, Jiang Xiangning, Gai Ying. Studies on enzymatic properties and stress resistance of glutathione peroxidase (GPX) from Larix kaempferi[J]. Journal of Beijing Forestry University, 2023, 45(2): 78-86. doi: 10.12171/j.1000-1522.20210230
Citation: Zhang Meng, Jiang Wenting, Wang Xuechun, Jiang Xiangning, Gai Ying. Studies on enzymatic properties and stress resistance of glutathione peroxidase (GPX) fromLarix kaempferi[J].Journal of Beijing Forestry University, 2023, 45(2): 78-86.doi:10.12171/j.1000-1522.20210230
doi:10.12171/j.1000-1522.20210230
基金项目:国家科技专项转基因落叶松新品种培育及产业化研究(2018ZX08020003-001-002(/div>
详细信息
    作者简今

    张萌。主要研究方向:树木分子生物学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:2473478002@qq.com">2473478002@qq.com 地址?00083北京市海淀区清华东?5号北京林业大学生物科学与技术学陡/p>

    责任作耄

    盖颖,博士,副教授,博士生导师。主要研究方向:树木分子生物学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:gaiying@bjfu.edu.cn">gaiying@bjfu.edu.cn 地址:同三/span>

  • 中图分类叶S791.223

Studies on enzymatic properties and stress resistance of glutathione peroxidase (GPX) fromLarix kaempferi

  • 摘要: 目的植物谷胱甘肽过氧化物酶(GPX)是酶促活性氧清除机制中的关键酶之一,对日本落叶松GPX开展酶学特性与抗逆性研究,可以补充和完善林木改良基因资源,也为探究谷胱甘肽过氧化物酶抗逆的分子机制提供理论依据、/sec> 方法本研究以日本落叶松茎部组织为材料克隆谷胱甘肽过氧化物酶基因,进行生物信息学分析和亚细胞定位研究。诱导、纯化目的蛋白进行体外酶学活性测定,通过点斑试验、生长曲线试验验证GPX抗逆性、/sec> 结果从日本落叶松茎中克隆得到??i>GPX基因,分别命名为 LkGPX2?i>LkGPX3,二者都含有完整的特征保守基序。构建系统进化树发现,LkGPXs和具有抗逆功能的PmGPX与PeGPX聚为一支。亚细胞定位显示,LkGPX2和LkGPX3蛋白在细胞核和细胞质中均有表达。以硫氧还蛋白(Trx)为电子供体进行体外酶学活性测定,LkGPX2与LkGPX3对过氧化氢(H 2O 2)、过氧化氢叔丁醇(t-BHP)和有机氢过氧化物(Cum-OOH)都具有催化活性,LkGPX2对于3种底物的催化活性分别为?.402 ± 0.037)、(0.424 ± 0.018)、(0.425 ± 0.009 U/mg,LkGPX3对于3种底物的催化活性分别为?.397 ± 0.027)、(0.449 ± 0.028)、(0.407 ± 0.021 U/mg。大肠杆菌体外逆境处理试验表明,LkGPX2、LkGPX3能够提高大肠杆菌对模拟干旱胁迫和盐胁迫的耐受性、/sec> 结论日本落叶松谷胱甘肽过氧化物酶(GPX)既能起到活性氧清除作用,同时具备一定应对非生物胁迫的能力、/sec>

  • ?nbsp; 1日本落叶杽i>LkGPX2不i>LkGPX3基因克隆

    M? 000 bp DNA marker?丹i>LkGPX2的PCR扩增产物?丹i>LkGPX3的PCR扩增产物。M is 2 000 bp DNA marker; 1 is PCR amplification product ofLkGPX2; 2 is PCR amplification product ofLkGPX3.

    Figure 1.LkGPX2 andLkGPX3 gene cloning ofLarix kaempferi

    ?nbsp; 2LkGPX2与LkGPX3氨基酸序列比寸/p>

    红色三角形标注的?个Cys残基位点 。The red triangle marks the 3 Cys residue base sites.

    Figure 2.Amino acid sequence alignment of LkGPX2 and LkGPX3

    ?nbsp; 3LkGPXs与其他物种GPX蛋白的系统进化树分析

    At. 拟南芥;Pe. 胡杨;Pta. 油松;Pt. 毛果杨;Pm. 马尾松。At,Arabidopsis thaliana; Pe,Populus euphratica; Pta,Pinus tabuliformis; Pt,Populus trichocarpa; Pm,Pinus massoniana.

    Figure 3.Phylogenetic analyses of LkGPXs and other species GPX protein

    ?nbsp; 4LkGPX2和LkGPX3亚细胞定佌/p>

    A、E、I为GFP荧光;B、F、J为荧光叠加;C、G、K为原生质体GFP荧光;D、H、L为原生质体荧光叠加。其中A、B、E、F、I、J标尺?0 μm,C、D、K、L标尺?5 μm,G、H标尺?50 μm。A, E, I are GFP fluorescence; B, F, J are stacked fluorescence; C, G, K are GFP fluorescence of protoplast; D, H, L are stacked fluorescence of protoplast. The ruler of A, B, E, F, I, J is 50 μm; that of C, D, K, L is 25 μm and that of G, H is 250 μm.

    Figure 4.Subcellular lolication of LkGPX2 and LkGPX3

    ?nbsp; 5LkGPX2、LkGPX3、Trx、TrxR蛋白纯化

    A图中,M为标准蛋白marker?为未诱导的pET28a空载?为pET28a空载0.4 mmol/L IPTG诱导3 h?为LkGPX2未诱导,4为LkGPX2 0.4 mmol/L IPTG诱导3 h?为超声破碎后的上清液??00 mmol/L咪唑洗脱的目的蛋白。B、C、D图中,M为标准蛋白marker?为未诱导的重组载体,2?.4 mmol/L IPTG诱导3 h?为超声破碎后的上清液??00 mmol/L咪唑洗脱的目的蛋白。In Fig. A, M is standard protein marker, 1 is uninduced pET28a blank vector, 2 is pET28a blank vector induced by 0.4 mmol/L IPTG for 3 h, 3 is uninduced LkGPX2, 4 is LkGPX2 induced by 0.4 mmol/L IPTG for 3 h, 5 is supernatant after ultrasound crushing, 6 is target protein eluted by 100 mmol/L imidazole. In Fig. B, C and D, M is standard protein marker, 1 is uninduced recombinant vector, 2 is induced by 0.4 mmol/L IPTG for 3 h, 3 is supernatant after ultrasound crushing, 4 is target protein eluted by 100 mmol/L imidazole.

    Figure 5.Protein purification of LkGPX2, LkGPX3, Trx and TrxR

    ?nbsp; 6点斑试验结果

    Figure 6.Experiment results of spots

    ?nbsp; 7生长曲线法测定结枛/p>

    A为pET28a空载不同条件处理;B为LkGPX2-pET28a不同条件处理;C为LkGPX3-pET28a不同条件处理;D为空白对照与0.8 mol/L山梨醇处理对比;E为空白对照与0.5 mol/L NaCl处理对比;F为空白对照与0.6 mol/L NaCl处理。A is different treatments on blank pET28a vector; B is different treatments on LkGPX2-pET28a; C is different treatments on LkGPX3-pET28a; D is comparison of blank control and0.8 mol/L sorbitol treatment; E is comparison of blank control and 0.5 mol/L NaCl treatment; F is comparison of blank control and 0.6 mol/L NaCl treatment.

    Figure 7.Test results of growth curve method

    ?nbsp; 2LkGPX2与LkGPX3亚细胞定位预浊/p>

    Table 2.Prediction of subcellular localization of LkGPX2 and LkGPX3 protein

    亚细胞定位可能?br/>Possibility of subcellular localization LkGPX2 LkGPX3
    细胞 Cytoplasm 65.2% 60.9%
    细胞 Nucleus 13.0% 13.0%
    线粒 Mitochondria 8.7% 8.7%
    液泡 Vacuole 4.3% 4.3%
    分泌小泡 Secretory vesicle 4.3% 4.3%
    高尔基体 Golgi apparatus 4.3% 4.3%
    细胞骨架 Cytoskeleton 4.3%
    下载: 导出CSV

    ?nbsp; 3LkGPX2和LkGPX3酶学活性测宙/p>

    Table 3.Enzymatic activity determination of LkGPX2 and LkGPX3

    谷胱甘肽过氧化物
    Glutathione peroxidase
    酶学活 Enzymatic activity/(U·mg?(/td>
    过氧化氢
    H2O2
    叔丁基过氧化氡br/> t-BHP 有机氢过氧化 Cum-OOH
    LkGPX2 0.402 ± 0.037 0.419 ± 0.006 0.425 ± 0.009
    LkGPX3 0.397 ± 0.027 0.449 ± 0.028 0.413 ± 0.012
    下载: 导出CSV
  • [2]Hasanuzzaman M, Bhuyan M H M B, Parvin K, et al. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence[J]. International Journal of Molecular Science, 2020, 21: 42. [3]Rio L A. ROS and RNS in plant physiology: an overview[J]. Journal of Experimental Botany, 2015, 66(10): 2827?837. doi:10.1093/jxb/erv099 [4]Xia X J, Zhou Y H, Shi K, et al. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance[J]. Journal of Experimental Botany, 2015, 66(10): 2839?856. doi:10.1093/jxb/erv089 [5]Spruyt L M, Xu E J, Idänheimo N, et al. Spreading the news: subcellular and organellar reactive oxygen species production and signalling[J]. Journal of Experimental Botany, 2016, 67: 14. [6]Berni R, Luyckx M, Xu X, et al. Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism[J]. Environmental and Experimental Botany, 2019, 161: 98?06. doi:10.1016/j.envexpbot.2018.10.017 [7]Jung B G, Lee K O, Lee S S, et al. A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase[J]. The Journal of Biological Chemistry, 2002, 277(15): 12572?2578. doi:10.1074/jbc.M110791200 [8]Navrot N, Collin V, Gualberto J, et al. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses[J]. Plant Physiology, 2006, 142(4): 1364?379. doi:10.1104/pp.106.089458 [9]Marchal C, Hinoux V D, Bariat L, et al. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thalianacells[J]. Molecular Plant Advance Access, 2013, 7(15): 30?4. [10]Herbette S, Drevet P R, Drevet J R. Seleno-independent glutathione peroxidases: more than simple antioxidant scavengers[J]. FEBS Journal, 2007, 274(9): 2163?180. doi:10.1111/j.1742-4658.2007.05774.x [11]Horta B B, Oliveira M A, Discola K F, et al. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity[J]. Journal of Biological Chemistry, 2010, 285(21): 16051?6065. doi:10.1074/jbc.M109.094839 [12]Rouhier N, Jacquot J P. The plant multigenic family of thiol peroxidases[J]. Free Radical Biology and Medicine, 2005, 38(11): 1413?421. doi:10.1016/j.freeradbiomed.2004.07.037 [13]Dietz K J. Peroxiredoxins in plants and cyanobacteria[J]. Plant Peroxredoxins, 2011, 15(4): 1129?159. [14]王菲? 丁明? 邓澍? ? 胡杨谷胱甘肽过氧化物酵i>PeGPX基因的克隆及转化植株耐盐性分析[J]. 基因组学与应用生物学, 2012, 31(3): 231?39. doi:10.3969/gab.031.000231

    Wang F F, Ding M Q, Deng S R, et al. Cloning of glutathione peroxidase gene PeGPXfrom Populus euphraticaand the salt tolerance of the transformed plants[J]. Genomics and Applied Biology, 2012, 31(3): 231?39. doi:10.3969/gab.031.000231 [15]蔡琼. 马尾松抗旱相关基因的克隆及表达分析[D]. 贵阳: 贵州大学, 2017.

    Cai Q. Cloning of the related drought-resistant gene from Pinus massonianaand its expression analysis[D]. Guiyang: Guizhou University, 2017. [16]Zhai C Z, Zhao L, Yin L J, et al. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H 2O 2tolerances in Arabidopsis[J]. PLoS One, 2013, 8: 10. [17]Passaia G, Fonini L S, Caverzan A, et al. The mitochondrial glutathione peroxidase GPX3 is essential for H 2O 2homeostasis and root and shoot development in rice[J]. Plant Science, 2013, 208(9): 93?01. [18]Gaber A, Ogata T, Maruta T, et al. The involvement of Arabidopsisglutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol[J]. Plant Cell Physiology, 2012, 53(9): 1596?606. doi:10.1093/pcp/pcs100 [19]赵丽. 油松 GPX基因家族的分子特性研究[D]. 北京: 北京林业大学, 2014.

    Zhao L. Molecular properties of glutathione peroxidase family proteins from Pinus tabuliformis[D]. Beijing: Beijing Forestry University, 2014. [20]王炜. 小立碗藓 GPX基因家族的功能分化与催化特性研究[D]. 北京: 北京林业大学, 2015.

    Wang W. Functional divergence and catalytic properties of glutathione peroxidase family from Physcomitrella patens[D]. Beijing: Beijing Forestry University, 2015 [21]Chen M Y, Li K, Li H P, et al. The glutathione peroxidase gene family in Gossypium hirsutum: genome-wide identification, classification, gene expression and functional analysis[J]. Scientific Reports, 2017, 7: 44743. doi:10.1038/srep44743 [22]Kim Y J, Jang M G, Noh H Y, et al. Molecular characterization of two glutathione peroxidase genes of Panax ginsengand their expression analysis against environmental stresses[J]. Gene, 2014, 535(1): 33?1. doi:10.1016/j.gene.2013.10.071
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?7)/ ?3)
    计量
    • 文章访问?228
    • HTML全文浏览野54
    • PDF下载野40
    • 被引次数:0
    出版历程
    • 收稿日期:2021-06-17
    • 录用日期:2022-10-06
    • 修回日期:2021-08-31
    • 网络出版日期:2022-10-10
    • 刊出日期:2023-02-25

    目录

      Baidu
      map