留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

黑河下游植物碳氮化学计量特征及其影响因素

王晓琲/a>,王寅,何奕戏/a>,杨慧,曲梦吚/a>,邹旭?/a>,李景斆/a>

downloadPDF
王晓? 王寅, 何奕? 杨慧, 曲梦? 邹旭? 李景? 黑河下游植物碳氮化学计量特征及其影响因素[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210545
引用本文: 王晓? 王寅, 何奕? 杨慧, 曲梦? 邹旭? 李景? 黑河下游植物碳氮化学计量特征及其影响因素[J]. 北京林业大学学报.doi:10.12171/j.1000-1522.20210545
Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River of northern China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210545
Citation: Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River of northern China[J].Journal of Beijing Forestry University.doi:10.12171/j.1000-1522.20210545
doi:10.12171/j.1000-1522.20210545
基金项目:中国科学院重点实验室合作项目,国家自然科学基金项目(31971538(/div>
详细信息
    作者简今

    王晓琳。主要研究方向:恢复生态学。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:linxiao@bjfu.edu.cn">linxiao@bjfu.edu.cn 地址?00083 北京市海淀区清华东?5叶/p>

    责任作耄

    李景文,博士,博士生导师。主要研究方向:恢复生态学和生物多样性。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:Lijingwenhy@bjfu.edu.cn">Lijingwenhy@bjfu.edu.cn 地址?00083 北京市海淀区清华东?5叶/span>

  • 中图分类叶S718.5

Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River of northern China

  • 摘要: 目的 、氮 元素对植物的生长发育至关重要,尤其是在极端干旱的内陆河流域,不同功能群植物对土壤水分和养分需求不同,往往表现出不同的化学计量特征。探寻黑河下游不同功能群植物的化学计量特征及对地下水变化的养分反应,对进一步了解全球气候变化背景下荒漠生态系统具有重要意义、/sec> 方法在黑河下游,根据与河道的距离,共设置22个采样点,采用相关性分析、方差分解方法分别对不同功能群植物的碳氮化学计量特征及其与环境因子的关系进行研究、/sec> 结果研究结果表明:黑河下游地区植物叶片和细根的碳、氮元素含量平均值分别为408.53?6.30 mg/g?00.34?1.81 mg/g,碳氮比平均值分别为30.74?9.48,与全球和区域尺度研究相比,黑河下游植物具有较高的细根碳含量、较低的氮含量和较高的碳氮比。在不同地下水位梯度上,木本植物的碳含量、氮含量与碳氮比均与地下水深度显著相关,但草本植物与地下水不相关。黑河下游植物碳氮化学计量特征与土壤理化属性紧密相关。地下水和土壤含水量、土壤总氮共同解释了木本植物化学计量总变异的53% ~ 75%;土壤pH值和土壤电导率共同解释了草本植物化学计量总变异的20%、/sec> 结论研究表明面对极端干旱盐碱环境,水分是影响木本植物碳氮化学计量特征变化的关键因子,草本植物碳氮化学计量特征主要受土壤pH值和土壤电导率影响、/sec>

  • ?nbsp; 1采样点示意图

    Figure 1.Schematic diagram of sampling points

    ?nbsp; 2木本植物碳氮化学计量特征与地下水深度关系

    Figure 2.Relationship between carbon and nitrogen stoichiometric characteristics of woody plants and underground water depth

    ?nbsp; 3草本植物碳氮化学计量特征与地下水深度关系

    Figure 3.Relationship between carbon and nitrogen stoichiometric characteristics of herbaceous plants and underground water depth

    ?nbsp; 4环境因子对木本植物叶片和细根的碳、氮化学计量特征的解釉/p>

    GW.地下水;SM1.土壤0 ~ 20 cm含水量;SM2.土壤20 ~ 40 cm含水量;SM4.土壤60 ~ 100 cm含水量;SEC.土壤电导率;STN.土壤TN含量;NE.未解释率。下同。GW, underground water; SM1, 0?0 cm soil water content; SM2, 20?0 cm soil water content; SM4, 60?00 cm soil water content; SEC, soil electrical conductivity; STN, soil total nitrogen content; NE, no-explanation rate. The same below.

    Figure 4.Explanation of environmental factors on the carbon and nitrogen stoichiometric characteristics of leaves and fine roots of woody plants

    ?nbsp; 5环境因子对草本植物叶片和细根的碳、氮化学计量特征的解釉/p>

    pH.土壤pH;SEC.土壤电导率。pH, soil pH;SEC, soil electrical conductivity.

    Figure 5.Interpretation of environmental factors on the carbon and nitrogen stoichiometric characteristics of herbaceous leaves and fine roots

    ?nbsp; 1采样点基本信?/p>

    Table 1.Basic information of the sampling sites

    样点
    Sample site
    地下水深
    Underground water depth/m
    木本植物 Woody plant 草本植物 Herb
    优势秌br/>Dominant species 重要倻br/>Importance value 优势秌br/>Dominant species 重要倻br/>Importance value
    S1 1.46 多枝柽柳Tamarix ramosissima 0.53
    S2 1.51 胡杨Populus euphratica 0.58 苦豆Sophora alopecuroides 0.37
    S3 1.77 胡杨Populus euphratica 0.63 苦豆Sophora alopecuroides 0.21
    S4 1.78 胡杨Populus euphratica 0.48 胀果甘Glycyrrhiza inflata 0.14
    S5 1.96 多枝柽柳Tamarix ramosissima 0.68 骆驼Peganum harmala 0.32
    S6 2 黑果枸杞Lycium ruthenicum 0.23 苦豆Sophora alopecuroides 0.49
    S7 2.08 胡杨Populus euphratica 0.48 芨芨Achnatherum splendens 0.42
    S8 2.26 胡杨Populus euphratica 0.54 苦豆Sophora alopecuroides 0.44
    S9 2.3 多枝柽柳Tamarix ramosissima 0.35 花花Karelinia caspia 0.39
    S10 2.49 白刺Nitraria tangutorum 0.33 沙蒿Artemisia desertorum 0.38
    S11 2.56 多枝柽柳Tamarix ramosissima 0.24 苦豆Sophora alopecuroides 0.70
    S12 2.73 红砂Reaumuria soongorica 0.80 沙蒿Artemisia desertorum 0.10
    S13 2.79 膜果麻黄Ephedra przewalskii 0.43 驼蹄Zygophyllum fabago 0.14
    S14 2.85 骆驼Alhagi sparsifolia 0.70 花花Karelinia caspia 0.38
    S15 2.89 红砂Reaumuria soongorica 0.37 花花Karelinia caspia 0.54
    S16 3 多枝柽柳Tamarix ramosissima 0.83 骆驼Peganum harmala 0.26
    S17 3.15 膜果麻黄Ephedra przewalskii 0.85
    S18 3.3 红砂Reaumuria soongorica 0.71 骆驼Peganum harmala 0.12
    S19 3.31 膜果麻黄Ephedra przewalskii 0.47
    S20 3.44 膜果麻黄Ephedra przewalskii 0.54
    S21 3.55 膜果麻黄Ephedra przewalskii 0.85
    S22 3.66 膜果麻黄Ephedra przewalskii 0.66

    ?nbsp; 2不同功能群植物的叶片和细根养分组戏/p>

    Table 2.Nutrient composition of leaves and fine roots of different functional groups of plants

    指标 Index 总体 Total 木本植物 Woody plant 草本植物 Herb
    叶片氮含 Leaf N concentration 16.30 ± 0.59 15.06 ± 0.75b 18.66 ± 1.02a
    叶片碳含 Leaf C concentration 408.54 ± 10.89 396.80 ± 13.63a 429.05 ± 17.41a
    叶片碳氮 Leaf C∶N 30.74 ± 1.44 31.69 ± 1.83a 29.30 ± 2.54a
    细根氮含 Fine root N concentration 11.81 ± 0.44 12.61 ± 0.47a 10.42 ± 1.03b
    细根碳含 Fine root C concentration 500.34 ± 15.10 514.52 ± 18.92a 484.33 ± 26.14a
    细根碳氮 Fine root C∶N 49.49 ± 2.69 45.35 ± 3.09b 54.27 ± 5.14a
    注:不同字母表示差异显著'i>P< 0.05) Note: different letters indicate significant difference (P< 0.05).
    下载: 导出CSV

    ?nbsp; 3土壤因子对不同功能群植物化学计量的影哌/p>

    Table 3.Effects of soil factors on plant stoichiometry of different functional groups

    电导玆br/>Electrical conductivity 土壤pH
    Soil pH
    0 ~ 20 cm
    含水野br/> 0?0 cm
    water content
    20 ~ 40 cm
    含水野br/> 20?0 cm
    water content
    40 ~ 60 cm
    含水野br/> 40?0 cm
    water content
    60 ~ 100 cm
    含水野br/> 60?00 cm
    water content
    土壤总碳
    Soil total carbon
    土壤全N
    Soil total nitrogen
    土壤全P
    Soil total phosphorus
    木本植物
    Woody plant
    叶片氮含
    Leaf N concentration
    ?.10 0.14 0.50** 0.48** 0.37** 0.39** 0.27* 0.21** 0.13
    叶片碳含野br/> Leaf C concentration 0.03 0.04 ?.01 ?.05 ?.04 ?.24* ?.03 0.20 0.11
    叶片碳氮毓br/> Leaf C∶N 0.30* ?.17 ?.28* ?.28* ?.25* ?.35** ?.15 ?.01 0.04
    细根氮含
    Fine root N concentration
    0.25 ?.32 ?.41** ?.37** ?.34** ?.39** ?.37** ?.21** 0.19
    细根碳含
    Fine root C concentration
    ?.07 ?.06 ?.34** 0-.43** ?.45** ?.49** ?.27* ?.17 0.17
    细根碳氮
    Fine root C∶N
    ?.27* 0.27* 0.21 0.11 0.09 0.03 0.18 0.11 ?.05
    草本植物
    Herb
    叶片氮含
    Leaf N concentration
    0.44* ?.40* ?.24 ?.30 ?.07 ?.18 ?.05 0.36 0.14
    叶片碳含野br/> Leaf C concentration ?.17 0.26 0.46* 0.13 0.24 0.32 0.23 0.01 ?.16
    叶片碳氮毓br/> Leaf C∶N ?.38* 0.44* 0.32 0.18 0.04 0.20 0.02 ?.31 ?.26
    细根氮含
    Fine roo N concentration
    0.42* ?.45* ?.29 ?.25 ?.20 ?.29 ?.21 0.07 0.58
    细根碳含
    Fine roo C concentration
    ?.16 0.25 0.14 0.11 0.04 0.13 0.15 0.13 0.09
    细根碳氮
    Fine roo C∶N
    ?.38* 0.48** 0.21 ?.01 0.00 0.13 0.12 0.02 ?.10
    注:* 表示P< 0.05?*表示P< 0.01.Notes: * indicatesP< 0.05; ** indicatesP< 0.01-/td>
    下载: 导出CSV
  • [2]Zhu Y H, Chen Y N, Ren L L, et al. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: problems and strategies[J]. Ecological Engineering, 2016, 94(1): 629?37. [3]Zhang X L, Zhou J H, Guan T Y, et al. Spatial variation in leaf nutrient traits of dominant desert riparian plant species in an arid inland river basin of China[J]. Ecology and Evolution, 2019, 9(3): 1523?531. doi:10.1002/ece3.4877 [4]Tamea S, Laio F, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems(2): stochastic soil moisture dynamics[J]. Water Resources Research, 2009, 45(5): 5420?433. [5]古力米热·哈那? 王光? 张音, ? 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地? 2018, 41(4): 726?33. doi:10.12118/j.issn.1000-6060.2018.04.07

    Hanati·Gulimire, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726?33. doi:10.12118/j.issn.1000-6060.2018.04.07 [6]Yao Y, Tian Y, Andrews C, et al. Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River Basin[J]. Journal of Geophysical Research-atmospheres, 2018, 123: 6760?776. doi:10.1029/2018JD028432 [7]Harper JL. The value of a leaf[J]. Oecologia, 1989, 80: 53?8. doi:10.1007/BF00789931 [8]Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219: 775?88. doi:10.1007/s11258-018-0833-3 [9]Sommer B, Froend R. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean type landscape[J]. Journal of Vegetation Science, 2014, 25: 1045?055. doi:10.1111/jvs.12178 [10]Westheimer F. Why nature chose phosphates[J]. Science, 1987, 235(4793): 1173?178. doi:10.1126/science.2434996 [11]Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133?139. doi:10.1080/014311698214910 [12]曾德? 陈广? 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学? 2005, 29(6): 141?53.

    Zeng D H, Chen G H. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141?53. [13]Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377?85. doi:10.1111/j.1469-8137.2005.01530.x [14]Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems[J]. Soil Biology, 2007: 缺少卷期和页? [15]Aroca R. Plant responses to drought stress[M]. Berlin: Springer, 2012. [16]Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29: 185?12. doi:10.1051/agro:2008021 [17]向云? 潘萍, 陈胜? ? 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95?03.

    Xiang Y X, Pan P, Chen S K, et al. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massonianaforest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95?03. [18]张珂, 何明? 李新? ? 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学? 2014, 34(22): 6538?547.

    Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538?547. [19]Rong Q Q, Liu J T, Cai Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensisLour. in the Laizhou Bay Coastal Wetland, China[J]. Ecological Engineering, 2015, 76: 57?5. doi:10.1016/j.ecoleng.2014.03.002 [20]Canadell J, Jackson R B, Ehleringer J B, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108: 583?95. doi:10.1007/BF00329030 [21]Luo Y, Peng Q, Li K, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. doi:10.1016/j.catena.2020.105100 [22]Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821?27. doi:10.1038/nature02403 [23]Xu Z Z, Zhou G S, Wang Y H. Combined effects of elevated CO 2and soil drought on carbon and nitrogen allocation of the desert shrub Carag ana intermedia[J]. Plant and Soil, 2007, 301(1/2): 87?7. [24]钟华? 刘恒, 王义, ? 黑河流域下游额济纳绿洲与水资源的关系[J]. 水科学进? 2002, 13(02): 223?28. doi:10.3321/j.issn:1001-6791.2002.02.016

    Zhong H P, Liu H, Wang Y, et al. Relationship between Ejina oasis and water resources in the lower Herhe River Basin[J]. Advances in Water Science, 2002, 13(02): 223?28. doi:10.3321/j.issn:1001-6791.2002.02.016 [25]赵传? 赵阳, 彭守? ? 黑河下游绿洲胡杨生长状况与叶生态特征[J]. 生态学? 2014, 34(16): 4518?525.

    Zhao C Y, Zhao Y, Peng S Z, et al. The growth state of Populus euphraticalOliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518?525. [26]Wang R, Wang Q F, Zhao N, et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits[J]. Functional Ecology, 2017, 32: 29?9. [27]王健? 崔盼? 钟悦? ? 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14?3.

    Wang J M, Cui P J, Zhong Y M, et al. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14?3. [28]Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution and Systematics, 2008, 39(39): 153?70. [29]Foulds W. Nutrient concentrations of foliage and soil in south-western Australia[J]. New Phytologist, 1993, 125(3): 529?46. doi:10.1111/j.1469-8137.1993.tb03901.x [30]阎恩? 王希? 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学? 2008, 32(1): 13?2. doi:10.3773/j.issn.1005-264x.2008.01.002

    Yan E R, Wang X H, Zhou W. N∶P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, East China[J]. Chinese Journal of Plant Ecology, 2008, 32(1): 13?2. doi:10.3773/j.issn.1005-264x.2008.01.002 [31]Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi:10.1038/ncomms1346 [32]李玉? 毛伟, 赵学? ? 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716?725.

    Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. Environmental Science, 2010, 31(8): 1716?725. [33]宁志? 李玉? 杨红? ? 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学? 2017, 41(10): 1069?080. doi:10.17521/cjpe.2017.0048

    Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of domiant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069?080. doi:10.17521/cjpe.2017.0048 [34]Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry, 2003, 65(1): 121?50. doi:10.1023/A:1026020210887 [35]Zhang Q, Xiong G M, Li J X, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types[J]. Plant and Soil, 2018, 427(1?): 305?19. doi:10.1007/s11104-018-3655-0 [36]Zhang K, Li M M, Su Y Z, et al. Stoichiometry of leaf carbon, nitrogen, and phosphorus along a geographic, climatic, and soil gradients in temperate desert of Hexi Corridor, northwest China[J]. Journal of Plant Ecology, 2019, 13(1): 114?21. [37]何茂? 罗艳, 彭庆? ? 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系[J]. 生态学杂志, 2019, 38(9): 2603?614.

    He M S, Luo Y, Peng Q W, et al. Carbon, nitrogen and phosphorus stoichimentry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang[J]. Chinese Journal of Ecology, 2019, 38(9): 2603?614. [38]Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur[J]. Biogeochemistry, 1991, 13(2): 87?15. [39]Yang Y H, Luo Y Q. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20(2): 354?61. doi:10.1111/j.1466-8238.2010.00602.x [40]王凯? 上官周平. 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化[J]. 生态学? 2011, 31(17): 4985?991.

    Wang K B, Shangguan Z P. Seasonal variations in leaf C, N and P stoichiometry of typical plants in the Yangou Watershed in the loess hilly gully region[J]. Acta Ecologica Sinica, 2011, 31(17): 4985?991. [41]Sabine G. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243?66. doi:10.1111/j.1469-8137.2004.01192.x [42]Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136: 679?89. doi:10.1046/j.1469-8137.1997.00787.x [43]Reich P B, Oleksyn J. Global patternsof plant leaf N and Pinrelation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001?1006. doi:10.1073/pnas.0403588101 [44]Zhang J H, He N P, Liu C C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J]. Oikos, 2018, 127(10): 1506?514. doi:10.1111/oik.05517 [45]王振? 杨惠? 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927?34.

    Wang Z N, Yang H M. Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors[J]. Pratacultural Science, 2013, 30(6): 927?34. [46]Li W, Yu T F, Li X Y, et al. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, northwest China[J]. Environmental Monitoring and Assessment, 2016, 188: 561. doi:10.1007/s10661-016-5570-2 [47]钟悦? 王文? 王健? ? 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20?9.

    Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20?9. [48]安申? 贡璐, 朱美? ? 塔里木盆地北缘典型荒漠植物根系化学计量特征及其与土壤理化因子的关系[J]. 生态学? 2017, 37(16): 5444?450.

    An S Q, Gong L, Zhu M L, et al. Root stoichiometric characteristics of desert plants and their correlation with soil physicochemical factors in the northern Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(16): 5444?450. [49]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103: 551?60. doi:10.1093/aob/mcn125 [50]Niu D, Zhang C, Ma P, et al. Responses of leaf C∶N∶P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum[J]. Plant Biology, 2019, 21: 82?8. doi:10.1111/plb.12897 [51]Wang Z, Yu K, Lü S, et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis[J]. Funct Ecol, 2019, 33: 2081?094. doi:10.1111/1365-2435.13434 [52]Wang Y, Wang J M, Wang X L, et al. Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N∶P ratios of plant communities[J]. Journal of Plant Ecology, 2021, 14(6): 1158?174. doi:10.1093/jpe/rtab062 [53]Setia R, Gottschalk P, Smith P, et al. Soil salinity decreases global soil organic carbon stocks[J]. Science of the Total Environment, 2013, 465: 267?72. doi:10.1016/j.scitotenv.2012.08.028 [54]Wang L L, Zhao G X, Li M, et al. C∶N∶P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China[J]. Plos One, 2015, 10(3): e0119935. doi:10.1371/journal.pone.0119935 [55]Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiol, 2012, 160: 1741?761. doi:10.1104/pp.112.208785 [56]张晓? 周继? 来利? ? 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征[J]. 生态环境学? 2019, 28(9): 1739?747.

    Zhang X L, Zhou J H, Lai L M, et al. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China[J]. Ecology and Environmental Sciences, 2019, 28(9): 1739?747. [57]杨少? 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发? 2006(4): 70?6. doi:10.3969/j.issn.1006-6055.2006.04.012

    Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Tech R & D, 2006(4): 70?6. doi:10.3969/j.issn.1006-6055.2006.04.012 [58]Min W, Su Y, Xiao Y. Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, northwest China[J]. Plos One, 2014: 9. doi:10.1371/journal.pone.0094652 [59]He M Z, Zhang K, Tan H J, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongoricain relation to geographical, climatic, and soil conditions[J]. Ecology and Evolution, 2015, 5(7): 1494?503. doi:10.1002/ece3.1441 [60]王健? 董芳? 巴海·那斯? ? 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学? 2016, 36(12): 3488?498.

    Wang J M, Dong F Y, Bahai·Nasila, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488?498.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?5)/ ?3)
    计量
    • 文章访问?303
    • HTML全文浏览野79
    • PDF下载野40
    • 被引次数:0
    出版历程
    • 收稿日期:2021-12-22
    • 录用日期:2022-08-11
    • 修回日期:2022-05-11
    • 网络出版日期:2022-08-16

    目录

      Baidu
      map