留言松/h2>

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问? 您可以本页添加留言。我们将尽快给您答复。谢谢您的支?

姓名
邮箱
手机号码
标题
留言内容
验证?/th>

欧美?07幼树叶片和细根的功能性状对臭氧剂量的响应

李品,侯霄帅/a>,殷荣宽/a>

downloadPDF
李品, 侯霄? 殷荣? 欧美?07幼树叶片和细根的功能性状对臭氧剂量的响应[J]. 北京林业大学学报, 2023, 45(2): 49-57. doi: 10.12171/j.1000-1522.20210347
引用本文: 李品, 侯霄? 殷荣? 欧美?07幼树叶片和细根的功能性状对臭氧剂量的响应[J]. 北京林业大学学报, 2023, 45(2): 49-57.doi:10.12171/j.1000-1522.20210347
Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots of Populus euramericana cv. ?4/76 saplings to ozone dose[J]. Journal of Beijing Forestry University, 2023, 45(2): 49-57. doi: 10.12171/j.1000-1522.20210347
Citation: Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots ofPopulus euramericanacv. ?4/76 saplings to ozone dose[J].Journal of Beijing Forestry University, 2023, 45(2): 49-57.doi:10.12171/j.1000-1522.20210347
doi:10.12171/j.1000-1522.20210347
基金项目:中央高校基本科研业务费专项(2021ZY07),国家自然科学基金项目?1870458(/div>
详细信息
    作者简今

    李品,博士,副教授。主要研究方向:城市林业与环境互作。Email9a href="//www.inggristalk.com/j/article/doi/10.12171/mailto:lipin@bjfu.edu.cn">lipin@bjfu.edu.cn 地址?00083 北京市海淀区清华东?5号北京林业大?/p>

  • 中图分类叶S792.26;Q948

Response of functional traits of leaves and fine roots ofPopulus euramericanacv. ?4/76 saplings to ozone dose

  • 摘要: 目的杨树的叶和细根在森林生态系统碳和养分(如氮、磷等)循环中起核心作用,但目前细根对臭氧(O 3)胁迫响应的研究还较缺乏,尚不清楚叶和细根对O 3胁迫的响应差异。本研究旨在阐明叶片和细根这2个快速分解器官对O 3剂量的响应差异,为从植物地上-地下反馈角度理解杨树对O 3污染的响应机制提供科学参考、/sec> 方法本研究采用开顶室气室装置设置5个O 3浓度水平,研究杨树叶片和细根功能性状指标对O 3剂量的响应是否存在差异、/sec> 结果叶片单宁和细根磷含量表现出显著的兴奋效应,即毒性阈值之前为应激正效应,毒性阈值之后为抑制负效应。叶片饱和光合速率、细根生物量以及叶片和细根可溶性糖含量出现毒性阈值,但未观察到显著兴奋效应。水分利用效率以及叶、茎、粗根和总根生物量对O 3剂量呈现线性胁迫下降响应。碳、氮、可溶性糖、木质素含量以及木质素∶氮内稳性较强,沿O 3浓度梯度在叶片和细根中的分配未发生变化。磷、淀粉和总非结构性碳水化合物随O 3浓度升高分配到细根的比例增加;单宁表现为分配到叶片的比例先增加,当O 3剂量达到37.25 μmol/mol·h时,分配到细根的比例增加、/sec> 结论杨树叶片和细根的功能性状对O 3剂量存在响应差异。O 3胁迫增加了杨树细根中P和非结构性碳水化合物的储存比例,这可能是植物抵御O 3胁迫的一种应对策略、/sec>

  • ?nbsp; 1杨树光合生理特征、生物量积累和分配在5个O3暴露剂量下的响应毓/p>

    AOT40. 试验期间小时O3浓度超过40 nmol/mol的累计值,为O3剂量指标。不同的小写字母表示不同臭氧处理的显著性差异(P< 0.05)。下同。AOT40, the accumulated hourly mean O3concentration over 40 nmol/mol during fumigation, which is O3-dose index. Lowercase letters indicate significant differences among O3treatments (P< 0.05). The same below.

    Figure 1.Response ratios of photosynthetic physiological characteristics, biomass accumulation and distribution of poplar under 5 O3exposure doses

    ?nbsp; 2杨树叶片和细根的化学性状?个O3浓度水平的响应差弁/p>

    CF. 过滤大气浓度 < 40 nmol/mol;NF. 环境大气浓度;NF40. NF + 40 nmol/mol;NF60. NF + 60 nmol/mol;NF80. NF + 80 nmol/mol。CF, filtered ambient air concentration, < 40 nmol/mol; NF, ambient air concentration; NF40, NF + 40 nmol/mol; NF60, NF + 60 nmol/mol; NF80. NF + 80 nmol/mol.

    Figure 2.Response difference of chemical properties of poplar leaves and fine roots at five O3concentration levels

    ?nbsp; 3杨树叶片和细根的化学性状?个O3暴露剂量下的响应毓/p>

    Figure 3.Response ratios of chemical traits in leaves and fine roots in poplar to five O3doses

    ?nbsp; 4O3浓度升高梯度下杨树细根和叶片的化学性状比倻/p>

    Figure 4.Ratio of fine roots to leaves of chemical traits in poplar along an elevated O3gradient

    ?nbsp; 2杨树细根化学性状之间的相关?/p>

    Table 2.Pearson’s correlation matrix for chemical traits in poplar fine roots

    细根性状
    Fine root trait
    C N P C∶N N∶P C∶P 可溶性糖
    Soluble sugar
    淀粈br/>Starch TNC 木质紟br/>Lignin 木质素∶N
    Lignin∶N
    N ?.32
    P 0.26 0.59*
    C∶N 0.49 ?.98*** ?.50
    N∶P ?.41 0.12 ?.95*** ?.17
    C∶P ?.35 ?.04 ?.97*** ?.02 0.99***
    可溶性糖 Soluble sugar 0.27 0.37 0.25 ?.30 ?.15 ?.18
    淀 Starch 0.27 0.18 0.16 ?.10 ?.29 ?.29 0.17
    TNC 0.35 0.38 0.27 ?.29 ?.26 ?.29 0.86*** 0.65**
    木质 Lignin ?.33 0.00 0.23 ?.07 ?.19 ?.22 ?.49 ?.10 ?.43
    木质∶N Lignin∶N ?.19 ?.36 0.02 0.29 ?.22 ?.20 ?.58* ?.14 ?.53* 0.93***
    单宁 Tannin 0.30 ?.48 ?.16 0.48 ?.03 0.04 ?.23 ?.54* ?.46 ?.27 ?.09
    下载: 导出CSV
  • [2]Agathokleous E, Feng Z Z, Oksanen E, et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity[J]. Science Advances, 2020, 6(33): eabc1176. doi:10.1126/sciadv.abc1176 [3]Xia M, Talhelm A F, Pregitzer K S. Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition[J]. Soil Biology & Biochemistry, 2017, 112: 24?4. [4]Xia M, Talhelm A F, Pregitzer K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3): 715?26. doi:10.1111/nph.13494 [5]Freschet G T, Cornwell W K, Wardle D A, et al. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101(4): 943?52. doi:10.1111/1365-2745.12092 [6]Li P, Calatayud V, Gao F, et al. Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels[J]. Tree Physiology, 2016, 36(9): 1105?116. doi:10.1093/treephys/tpw042 [7]Li P, Feng Z Z, Calatayud V, et al. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types[J]. Plant Cell and Environment, 2017, 40(10): 2369?380. doi:10.1111/pce.13043 [8]Li P, Yin R B, Shang B, et al. Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: an experimental case study and a literature meta-analysis[J]. Science of the Total Environment, 2020, 710: 136379. doi:10.1016/j.scitotenv.2019.136379 [9]Li P, Zhou H M, Xu Y S, et al. The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability[J]. Science of the Total Environment, 2019, 665: 929?36. doi:10.1016/j.scitotenv.2019.02.182 [10]辛月, 高峰, 冯兆? 不同基因型杨树的光合特征与臭氧剂量的响应关系[J]. 环境科学, 2016, 37(6): 2359?367. doi:10.13227/j.hjkx.2016.06.046

    Xin Y, Gao F, Feng Z Z. Photosynthetic characteristics and ozone dose-response relationships for different genotypes of poplar[J]. Environmental Science, 2016, 37(6): 2359?367. doi:10.13227/j.hjkx.2016.06.046 [11]李品, 冯兆? 尚博, ? 6种绿化树种的气孔特性与臭氧剂量的响应关系[J]. 生态学? 2018, 38(8): 2710?721.

    Li P, Feng Z Z, Shang B, et al. Stomatal characteristics and ozone dose-response relationships for six greening tree species[J]. Acta Ecologica Sinica, 2018, 38(8): 2710?721. [12]Shang B, Feng Z Z, Li P, et al. Ozone exposure and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones[J]. Science of the Total Environment, 2017, 603?04: 185?95. doi:10.1016/j.scitotenv.2017.06.083 [13]Gentile J H. The implications of hormesis to ecotoxicology and ecological risk assessment (ERA)[J]. Human & Experimental Toxicology, 2001, 20: 513?15. [14]冯兆? 彭金? 中国粮食作物产量/木本植物生物量与地表臭氧污染的响应关系[J]. 环境科学, 2021, 42(6): 3084?090.

    Feng Z Z, Peng J L. Relationship between relative crop yield/woody plant biomass and ground-level ozone pollution in China[J]. Environmental Science, 2021, 42(6): 3084?090. [15]Agathokleous E, Belz R G, Calatayud V, et al. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models[J]. Science of the Total Environment, 2019, 649: 61?4. doi:10.1016/j.scitotenv.2018.08.264 [16]Agathokleous E, Araminiene V, Belz R G, et al. A quantitative assessment of hormetic responses of plants to ozone[J]. Environmental Research, 2019, 176: 108527. doi:10.1016/j.envres.2019.108527 [17]Agathokleous E, Kitao M, Calabrese E J. Hormesis: a compelling platform for sophisticated plant science[J]. Trends in Plant Science, 2019, 24(4): 318?27. doi:10.1016/j.tplants.2019.01.004 [18]Calabrese E J, Agathokleous E. Hormesis: transforming disciplines that rely on the dose response[J]. IUBMB Life, 2022, 74(1): 8?3. doi:10.1002/iub.2529 [19]Feng Z Z, Shang B, Gao F, et al. Current ambient and elevated ozone effects on poplar: a global meta-analysis and response relationships[J]. Science of the Total Environment, 2019, 654: 832?40. doi:10.1016/j.scitotenv.2018.11.179 [20]李品, 周慧? 冯兆? 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响[J]. 环境科学, 2020, 42(2): 1004?012. doi:10.13227/j.hjkx.202007213

    Li P, Zhou H M, Feng Z Z. Ozone pollution, nitrogen addition, and drought stress interact to affect non-structural carbohydrates in leaves and fine roots of poplar[J]. Environmental Science, 2020, 42(2): 1004?012. doi:10.13227/j.hjkx.202007213 [21]Schenk S T, Schikora A. Lignin extraction and quantification, a tool to monitor defense reaction at the plant cell wall level[J]. Bio-Protocol, 2015, 5(6): 10.21769/BioProtoc.1430. [22]Lindroth R L, Osier T L, Barnhill H R H, et al. Effects of genotype and nutrient availability on phytochemistry of trembling aspen ( Populus tremuloidesMichx.) during leaf senescence[J]. Biochemical Systematics and Ecology, 2002, 30(4): 297?07. doi:10.1016/S0305-1978(01)00088-6 [23]Andersen C. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157: 213?28. doi:10.1046/j.1469-8137.2003.00674.x [24]陈展, 于浩, 尚鹤, ? 臭氧胁迫对树木根系影响研究进展[J]. 林业科学研究, 2016, 29(3): 455?63. doi:10.3969/j.issn.1001-1498.2016.03.023

    Chen Z, Yu H, Shang H, et al. Effects of ozone stress on tree root: a review[J]. Forest Research, 2016, 29(3): 455?63. doi:10.3969/j.issn.1001-1498.2016.03.023 [25]Karlsson P E, Uddling J, Skärby L, et al. Impact of ozone on the growth of birch ( Betula pendula) saplings[J]. Environmental Pollution, 2003, 124(3): 485?95. doi:10.1016/S0269-7491(03)00010-1 [26]Manninen A M, Laatikainen T, Holopainen T. Condition of Scots pine fine roots and mycorrhiza after fungicide application and low-level ozone exposure in a 2-year field experiment[J]. Trees, 1998, 12: 347?55. doi:10.1007/s004680050161 [27]顾晓? 田素? 毒物兴奋效应概念及其生物学意义[J]. 毒理学杂? 2007, 21(5): 425?28. doi:10.3969/j.issn.1002-3127.2007.05.028

    Gu X J, Tian S F. Concept of hormesis and biological significances[J]. Journal of Toxicology, 2007, 21(5): 425?28. doi:10.3969/j.issn.1002-3127.2007.05.028 [28]Maurer S, Matyssek R. Nutrition and the ozone sensitivity of birch ( Betula pendula)[J]. Trees, 1997, 12: 11?0. [29]郑有? 刘瑞? 吴荣? ? 地表臭氧胁迫对大豆干物质生产和分配的影响[J]. 中国农业气象, 2011, 32(1): 73?0. doi:10.3969/j.issn.1000-6362.2011.01.014

    Zheng Y F, Liu R N, Wu R J, et al. Impacts of surface ozone exposure on dry matter production and distribution of soybean[J]. Chinese Journal of Agrometeorology, 2011, 32(1): 73?0. doi:10.3969/j.issn.1000-6362.2011.01.014 [30]马玉? 钟全? 靳冰? ? 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学? 2015, 39(2): 159?66. doi:10.17521/cjpe.2015.0015

    Ma Y Z, Zhong Q L, Jin B J, et al. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 159?66. doi:10.17521/cjpe.2015.0015 [31]Shafer S R. Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of sorghum[J]. Environmental Pollution, 1988, 51(2): 131?52. doi:10.1016/0269-7491(88)90202-3 [32]Hartmann H, Adams H D, Hammond W M, et al. Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests[J]. Environmental and Experimental Botany, 2018, 152: 7?8. doi:10.1016/j.envexpbot.2018.03.011 [33]路光? 黄玉? 陈红? ? 地表臭氧增加对黄花夹竹桃和芒果叶片膜脂过氧化程度和保护酶活性的影响[J]. 生态环? 2012, 21(7): 1235?240.

    Lu G C, Huang Y Y, Chen H Y, et al. Effects of ozone on membrane lipid peroxidation and protective enzyme activities of Thevetia peruvianaand Mangiferaleaves[J]. Ecology and Environmental Sciences, 2012, 21(7): 1235?240. [34]苏丽? 付伟, 徐胜, ? 高浓度O 3对银杏凋落叶化学组成的影响[J]. 生态学杂志, 2015, 34(10): 2757?763.

    Su L L, Fu W, Xu S, et al. Effects of elevated O 3concentration on chemical composition of leaf litter of Ginkgo biloba[J]. Chinese Journal of Ecology, 2015, 34(10): 2757?763. [35]Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees: from what we can measure to what we want to know[J]. New Phytologist, 2016, 211(2): 386?03. doi:10.1111/nph.13955 [36]Pellegrini E, Hoshika Y, Dusart N, et al. Antioxidative responses of three oak species under ozone and water stress conditions[J]. Science of the Total Environment, 2019, 647: 390?99. doi:10.1016/j.scitotenv.2018.07.413 [37]Peltonen P A, Vapaavuori E, Julkunen-Titto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone[J]. Global Change Biology, 2005, 11(8): 1305?324. doi:10.1111/j.1365-2486.2005.00979.x [38]Sallas L, Kainulainen P, Utriainen J, et al. The influence of elevated O 3and CO 2concentrations on secondary metabolites of Scots pine ( Pinus sylvestrisL.) seedlings[J]. Global Change Biology, 2001, 7(3): 303?11. doi:10.1046/j.1365-2486.2001.00408.x [39]Lindroth R L, Kopper B J, Parsons W F. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen ( Populus tremuloides) and paper birch ( Betula papyrifera)[J]. Environmental Pollution, 2001, 115(3): 395?04. doi:10.1016/S0269-7491(01)00229-9 [40]Parsons W F J, Lindroth R L, Bockheim J G. Decomposition of Betula papyriferaleaf litter under the independent and interactive effects of elevated CO 2and O 3[J]. Global Change Biology, 2004, 10: 1666?677. doi:10.1111/j.1365-2486.2004.00851.x [41]Yuan X Y, Feng Z Z, Liu S, et al. Concentration- and flux-based dose-responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient[J]. Plant Cell & Environment, 2017, 40(9): 1960?971.
    相关文章
  • 施引文献
  • 资源附件 (0)
  • 加载? />       <div class=
    ?4)/ ?2)
    计量
    • 文章访问?145
    • HTML全文浏览野40
    • PDF下载野45
    • 被引次数:0
    出版历程
    • 收稿日期:2021-09-05
    • 录用日期:2023-01-04
    • 修回日期:2021-11-08
    • 网络出版日期:2023-01-07
    • 刊出日期:2023-02-25

    目录

      Baidu
      map